• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a branch and price approach involving vertex cloning to solve the maximum weighted independent set problem

Sachdeva, Sandeep 12 April 2006 (has links)
We propose a novel branch-and-price (B&P) approach to solve the maximum weighted independent set problem (MWISP). Our approach uses clones of vertices to create edge-disjoint partitions from vertex-disjoint partitions. We solve the MWISP on sub-problems based on these edge-disjoint partitions using a B&P framework, which coordinates sub-problem solutions by involving an equivalence relationship between a vertex and each of its clones. We present test results for standard instances and randomly generated graphs for comparison. We show analytically and computationally that our approach gives tight bounds and it solves both dense and sparse graphs quite quickly.
2

Development of a branch and price approach involving vertex cloning to solve the maximum weighted independent set problem

Sachdeva, Sandeep 12 April 2006 (has links)
We propose a novel branch-and-price (B&P) approach to solve the maximum weighted independent set problem (MWISP). Our approach uses clones of vertices to create edge-disjoint partitions from vertex-disjoint partitions. We solve the MWISP on sub-problems based on these edge-disjoint partitions using a B&P framework, which coordinates sub-problem solutions by involving an equivalence relationship between a vertex and each of its clones. We present test results for standard instances and randomly generated graphs for comparison. We show analytically and computationally that our approach gives tight bounds and it solves both dense and sparse graphs quite quickly.

Page generated in 0.0686 seconds