Spelling suggestions: "subject:"vessels failure""
1 |
Damage and failure in the carotid artery: a mechanistic approachPriddy, Lauren Beatty 07 August 2010 (has links)
Blunt carotid artery injury (BCAI), resulting primarily from automobile accidents, is a major contributor to the high mortality and morbidity rates associated with carotid artery dissection. More work is needed to characterize carotid artery injury mechanisms, quantify stages of damage, and elucidate failure modalities as a result of this type of injury. The present study examines the structure and mechanics of the carotid artery in the circumferential and axial directions by employing uniaxial tensile testing, high speed videography, interruption testing, scanning electron microscopy (SEM), histological analysis, real-time environmental SEM assessment, and atomic force microscopy (AFM). Results are as follows: (i) the carotid artery exhibits anisotropic, viscoelastic behavior; (ii) intimal failure precedes ultimate tissue failure, and the layers in order of increasing strength are intima, adventitia, and media; (iii) tissue damage accumulates as strain level increases, and failure occurs as a result of void nucleation, void growth, and void coalescence.
|
2 |
Influence of In-vessel Pressure and Corium Melt Properties on Global Vessel Wall Failure of Nordic-type BWRsGoronovski, Andrei January 2013 (has links)
The goal of the present study is to investigate the effect of different scenarios of core degradation in a Nordic-type BWR (boiling water reactor) on the reactor pressure vessel failure mode and timing. Specifically we consider the effects of (i) in-vessel pressure, (ii) melt properties. Control rod guide tube (CRGT) cooling and cooling of the debris from the top are considered as severe accident management (SAM) measures in this study. We also consider the question about minimal amount of debris that can be retained inside the reactor pressure vessel (RPV). Analysis is carried out with coupled (i) Phase-change Effective Convectivity (PECM) model implemented in Fluent for prediction of the debris and melt pool heat transfer, and (ii) structural model of the RPV lower head implemented in ANSYS for simulation of thermo-mechanical creep. The coupling is done through transient thermal load predicted by PECM and applied as a boundary condition in ANSYS analysis. Results of the analysis suggest that applying only CRGT and top cooling is insufficient for maintaining vessel integrity with 0.4 m deep (~12 tons) corium melt pool. The failure of the vessel by thermally induced creep can be expected starting from 5.3 h after the dryout of the debris bed in the lower plenum. However, earlier failure of the instrumentation guide tubes (IGTs) is possible due to melting of the nozzle welding. The internal pressure in the vessel in the range between 3 to 60 bars has no significant influence on the mode and location of the global RPV wall failure. However, depressurization of the vessel can delay RPV wall failure by 46 min for 0.7 m (~ 30 tons) and by 24 min for 1.9 m (~ 200 tons) debris bed. For 0.7 m pool case, changes in vessel pressure from 3 to 60 bars caused changes in liquid melt mass and superheat from ~18 tons at 180 K to ~13 tons at 100 K superheat, respectively. The same changes in pressure for 1.9 m case caused changes in liquid melt mass and superheat from ~40 tons at 42 K to ~10 tons at about 8 K superheat, respectively. Investigation of the influence of melt pool properties on the mode and timing of the vessel failure suggest that the thermo-mechanical creep behavior is most sensitive to the thermal conductivity of solid debris. Both vessel wall and IGT failure timing is strongly dependent on this parameter. For given thermal conductivity of solid debris, an increase in Tsolidus or Tliquidus generally leads to a decrease in liquid melt mass and superheat at the moment of vessel wall failure. Applying models for effective thermal conductivity of porous debris helps to further reduce uncertainty in assessment of the vessel failure and melt ejection mode and timing. Only in an extreme case with Tsolidus, Tliquidus range larger than 600 K, with thermal conductivity of solid 0.5 W∙m‑1∙K‑1 and thermal conductivity of liquid melt 20 W∙m‑1∙K‑1, a noticeable vessel wall ablation and melting of the crust on the wall surface was observed. However, the failure was still caused by creep strain and the location of the failure remained similar to other considered cases. / APRI-8
|
3 |
A theoretical and experimental model to predict biaxial failure of tissue engineered blood vesselsRaykin, Julia 13 January 2014 (has links)
The development of small diameter tissue engineered blood vessels (TEBVs) with low thrombogenicity, low immunogenicity, suitable mechanical properties, and a capacity to remodel to their environment could significantly advance the treatment of coronary and peripheral artery disease. Despite significant advances in the field of tissue engineering, autologous vessels are still primarily utilized as grafts during bypass surgeries. However, undamaged autologous tissue may not always be available due to disease or prior surgery. TEBVs lack long-term efficacy due to a variety of types of failures including aneurysmal dilations, thrombosis, and rupture; the mechanisms of these failures are not well understood. In vitro mechanical testing may help the understanding of these failure mechanisms. The typical mechanical tests lack standardized methodologies; thus, results vary widely.
The overall goal of this study is to develop novel experimental and mathematical models to study the mechanical properties and failure mechanisms of TEBVs. Our results suggest that burst pressure tests, the current standard, are not sufficient to assess a TEBVs’ suitability as a coronary substitute; creep and/or cyclic loading tests are also required. Results from this model can help identify the most insightful experiments and quantities to be measured – ultimately reducing the overall number of experimental iterations. Improving the testing and characterization of TEBVs is critically important in decreasing the time necessary to validate the mechanical and functional responses of TEBVs over time, thus quickly moving TEBVs from the benchtop to the patient.
|
Page generated in 0.0566 seconds