Spelling suggestions: "subject:"vetyperoksidin"" "subject:"peroksida""
1 |
Mechanisms and applications of disulfide bond formationNguyen, V. D. (Van Dat) 27 January 2015 (has links)
Abstract
About one-third of mammalian proteins are secreted proteins and membrane proteins. Most of these proteins contain disulfide bonds in their native state, covalent links formed between the thiol groups of cysteine residues. In many proteins, disulfide bonds play an essential role in folding, stabilizing structure and the function of the protein. Therefore, understanding the pathways of disulfide bond formation is crucial for a wide range of medical processes and therapies. Disulfide bond formation is catalyzed by the Protein Disulfide Isomerase (PDI) family. To date the mechanisms of the PDIs in disulfide bond formation and pathways for disulfide bond formation have not been fully characterized.
Here the structure of the substrate binding <b>b’x</b> domain of human PDI was determined. The structure shows that the<b> b'</b> domain has a typical thioredoxin fold and that the <b>x</b> region can interact with the substrate binding site of the <b>b'</b> domain. Specifically, the <b>x</b> region of PDI can adopt alternative conformations during the functional cycle of PDI action and that these are linked to the ability of PDI to interact with folding substrates.
In addition, this study showed that two human proteins, GPx7 and GPx8 are involved in disulfide bond formation. The addition of GPx7 or GPx8 to a folding protein along with PDI and peroxide allows the efficient oxidative refolding of a reduced denatured substrate protein.
Finally, this thesis includes the development of a system for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli. It showed that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond, allows the formation of native disulfide bonds in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction. Introduction of Erv1p and a disulfide isomerase, e.g. PDI, allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. This system is able to express high levels of complex disulfide bonded eukaryotic proteins. / Tiivistelmä
Noin kolmasosa kaikista nisäkkäiden proteiineista on solun ulkopuolelle eritettäviä proteiineja ja kalvoproteiineja. Monet näistä proteiineista sisältävät natiivissa konformaatiossaan disulfidisidoksia, jotka ovat kovalenttisia sidoksia kysteiinitähteiden tioliryhmien välillä. Useissa proteiineissa näillä disulfidisidoksilla on keskeinen rooli proteiinin laskostumisessa, kolmiulotteisen rakenteen stabiloinnissa sekä proteiinin toiminnassa. Disulfidisidosten muodostumisen taustalla olevien mekanismien tunteminen onkin tärkeää monien lääketieteellisten prosessien ja hoitomenetelmien kannalta. Disulfidisidosten muodostumista katalysoivat proteiinidisulfidi-isomeraasi (PDI) -perheeseen kuuluvat entsyymit. PDI entsyymien toimintamekanismeja ja disulfidisidosten muodostumisen reaktioreittejä ei kuitenkaan vielä tunneta tarkasti.
Tässä väitöskirjassa selvitettiin ihmisen PDI entsyymin substraattia sitovan <b>b’x</b> alayksikön rakenne. Rakenteesta voidaan todeta <b>b’</b> alayksikön laskostuminen tyypilliseen tioredoksiini muotoon sekä <b>x</b> alueen interaktio <b>b’</b> alayksikön substraattia sitovan kohdan kanssa. PDI entsyymin katalysoiman reaktioketjun aikana <b>x</b> alayksikkö voi muuttaa konformaatiotaan mahdollistaen PDI entsyymin interaktion laskostuvien substraattiproteiinien kanssa.
Tässä tutkimuksessa osoitettiin myös kahden ihmisen proteiinin, GPx7 ja GPx8 osallistuminen disulfidisidosten muodostumista katalysoiviin reaktioihin. GPx7 ja GPx8 entsyymien lisäys laskostumisreaktioon yhdessä PDI:n ja vetyperoksidin kanssa mahdollistaa pelkistetyn, denaturoidun substraattiproteiinin tehokkaan, hapettaviin reaktioihin perustuvan uudelleenlaskostumisen natiiviin muotoonsa.
Osana tätä väitöstutkimusta kehitettiin menetelmä, joka mahdollistaa disulfideja sisältävien proteiinien tehokkaan tuoton E.colin solulimassa. Menetelmässä sulfhydryylioksidaasina ja FAD:sta riippuvana disulfidisidosten muodostumisen katalysaattorina toimiva Erv1p mahdollistaa disulfidisidosten muodostumisen E.colin solulimassa myös ilman solun pelkistävien reaktioreittien geneettistä poistamista. Erv1p yhdessä disulfidi-isomeraasin, kuten PDI, kanssa mahdollistaa oikein laskostuneiden, useita disulfidisidoksia sisältävien eukaryoottisten proteiinien tehokkaan tuotannon E.colin solulimassa. Menetelmällä pystytään tuottamaan suuria määriä monimutkaisia disulfidisidoksellisia proteiineja.
|
2 |
Otsoni ja vetyperoksidi pohjaveden puhdistuksessaSallanko, J. (Jarmo) 08 August 2003 (has links)
Abstract
Water in the coastal areas of Ostrobothnia typically contains high levels of humus, iron and manganese. Organic matter and iron contained in groundwater form compounds that make water treatment more difficult. The treatment process of such water usually resembles that used in a traditional chemical water treatment plant. This kind of chemical treatment process is, however, an expensive alternative in view of the resources of a small or a medium-sized treatment plant. The aim of this research was to find out whether ozonation and oxidation with hydrogen peroxide can be used for the treatment of water containing high amounts of organic matter.
Ozone is rather widely used in surface water plants for the final treatment of water. The most common applications include the disinfection and oxidation of substances that cause unpleasant taste and odour in water. This research deals with the use of ozone for the treatment of groundwater containing iron and manganese. Since ozone is a powerful oxidizer, it is able to oxidize iron and manganese contained in water into an insoluble form. Also a noticeable amount of organic matter is precipitated in the same process. However, in some of the researched cases the precipitate was so fine that it was impossible to separate it with traditional methods. A combination of ozonation and microfiltration proved to be a successful form of treatment when dealing with this type of water. Ozonation increased the AOC of water in all of the researched cases.
The content of bromide is reasonably low in Finnish groundwater. The median measured in coastal Northern Ostrobothnia was 0.025 mgl-1. With the used ozone dosage, the bromate formed in the process stayed below the limit value of 10 μgl-1. Therefore it can be stated that the formation of bromate does not hinder ozone treatment from becoming a more common form of water treatment in Finland. However, the formation of bromate must be taken into consideration, especially if ozonation is made in hig pH.
Hydrogen peroxide can be used as an alternative chemical in the oxidation and precipitation processes of iron in groundwater. The chemical is used for the oxidation of iron before filtration. If the formed precipitate is fine, microfiltration or flocking chemical can be used to remove the precipitate. / Tiivistelmä
Pohjanmaan rannikkoseudun pohjavesille on tyypillistä korkeat rauta- ja mangaanipitoisuudet yhdistettynä suureen humuspitoisuuteen. Orgaaninen aine muodostaa pohjaveden raudan kanssa yhdisteitä, jotka vaikeuttavat vedenkäsittelyn toimintaa. Kyseisten vesien käsittely lähestyy yleensä perinteistä kemiallista pintavesilaitosta. Kuitenkin pienten ja keskisuurten vesilaitosten resursseihin nähden täydellinen kemiallinen käsittely on kallis vaihtoehto. Tämän tutkimuksen tarkoituksena oli selvittää otsonoinnin ja vetyperoksidihapetuksen käyttökelpoisuutta näiden runsaasti orgaanista ainetta sisältävien vesien käsittelyssä.
Otsonoinnin yleisimmät sovellutukset ovat hajua ja makua aiheuttavien aineiden hapettaminen ja desinfiointi. Tässä tutkimuksessa selvitettiin otsonin käyttöä rauta- ja mangaanipitoisten pohjavesien käsittelyssä. Otsoni saa voimakkaana hapettimena vedessä olevan raudan ja mangaanin hapettumaan ei liukoiseen muotoon. Samalla kerasaostui huomattava määrä orgaanista ainetta. Kuitenkin muodostuva sakka on joissain tapauksissa niin hienojakoista, että sen erottaminen perinteisin menetelmin on mahdotonta. Näiden ns. ongelmavesien käsittelyssä saatiin hyviä tuloksia otsonoinnin ja mikrosuodatuksen yhdistelmällä. Otsonointi nosti huomattavasti kaikkien tutkittujen vesien AOC-pitoisuutta.
Bromidipitoisuudet suomen pohjavesissä olivat kohtuullisia. Pohjanmaan rannikkoseudun pohjavesien bromidipitoisuuksien mediaani oli 0,025 mgl-1. Kaikilla vesillä käytännön otsoniannostuksilla syntyvät bromaattimäärät alittivat 10 μgl-1 raja-arvon. Bromaattiongelma ei ole este otsonikäsittelyn yleistymiselle Suomessa. Se on kuitenkin tiedostettava, varsinkin, jos otsonointi tehdään korkeassa pH:ssa.
Vetyperoksidi on vaihtoehtoinen kemikaali pohjaveden raudan hapettamiseen ja saostamiseen. Vetyperoksidia voidaan käyttää raudan saostamiseen ennen suodatusta. Mikäli muodostuva sakka on hienojakoista, voidaan sakanerotus tehdä mikrosuodatuksella tai käyttää hyväksi flokkauskemikaaleja.
|
Page generated in 0.0292 seconds