• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of a vibrating wire viscometer and a microwave cavity resonator for the measurement of viscosity, dew points, density, and liquid volume fraction at high temperature and pressure.

Kandil, Mohamed E. January 2005 (has links)
This thesis describes the development and testing of two apparatuses; a vibrating wire viscometer to measure the viscosity of fluids over a wide range of temperature and pressure; and a microwave cavity resonator to measure dew points, gas phase densities, and liquid drop out volumes. Viscosity and density of downhole fluids are very important properties as their values can determine the economic viability of a petroleum reservoir. A vibrating wire viscometer has been developed with an electrically insulating tensioning mechanism. It has been used with two wires, of diameters (0.05 and 0.150) mm, to measure the viscosity of methylbenzene and two reference fluids with viscosities of (10 and 100) mPa·s at T = 298 K and p = 0.1 MPa, at temperatures in the range (298 to 373) K and pressures up to 40 MPa, where the viscosity covers the range (0.3 to 100) mPa·s, with a standard uncertainty < 0.6 %. The results differ from literature values by < ±1 %. The results demonstrate that increasing the wire diameter increases the upper operating viscosity range of the vibrating wire viscometer, a result anticipated from the working equations. For the microwave cavity resonator, the method is based on the measurements of the resonance frequency of the lowest order inductive-capacitance mode. The apparatus is capable of operating at temperatures up to 473 K and pressures below 20 MPa. This instrument has been used to measure the dew pressures of {0.4026CH4 + 0.5974C3H8} at a temperature range from 315 K up to the cricondentherm ˜ 340 K. The measured dew pressures differ by less than 0.5 % from values obtained by interpolation of those reported in the literature, which were determined from measurements with experimental techniques that have quite different potential sources of systematic error than the radio-frequency resonator used here. Dew pressures estimated from both NIST 14 and the Peng-Robinson equation of state lie within < ±1 % of the present results at temperature between (315 and 337) K while predictions obtained from the Soave-Redlich-Kwong cubic equation of state deviate from our results by 0.4 % at T = 315 K and these differences increase smoothly with increasing temperature to be -2.4 % at T = 337 K. Densities derived from dielectric permittivity measurements in the gas phase lie within < 0.6 % of the values calculated from the Soave-Redlich-Kwong cubic equation of state and about 1 % from values obtained with the Harvey and Prausnitz correlation based on a mixture reduced density. The calculations with Kiselev and Ely parametric crossover equation of state (based on Patel-Teja EOS) gave deviations < 0.7 %. Liquid volume fractions, in the 2-phase region, were measured from (0.5 to 7) cm3 in a total volume of about 50 cm3 at different isochors. The measured liquid volume fractions differ from values obtained with the Soave-Redlich-Kwong cubic equation of state by between 0 and 3 % at T < 326 K and about 8 % on approach to the critical region. The large deviations observed in the critical region were anticipated because of the known poor performance of the cubic equations of state with regard to the calculation of the liquid density in the vicinity of the critical temperature.
2

Stress monitoring and sweep control studies for innovative prestressed precast arches

Blok, Joel Phillip 29 October 2012 (has links)
The Texas Department of Transportation (TxDOT) has completed the design of a signature bridge in Fort Worth, TX. The proposed structure is comprised of precast, post-tensioned concrete network arches. The arches will be cast on their sides and then rotated into the vertical orientation. Concerns exist about the durability and stability of the arches during stressing, handling, and transportation. The rotation process in particular represents a critical period in the life of the arches. A monitoring system was proposed to track stresses in the arches throughout the construction operations. The primary goals of the project are to install vibrating wire gages (VWGs) in the arches prior to casting to monitor the performance of the arches until the bridge is completed. The instrumentation will be used to provide real-time feedback to TxDOT and the contractor during stressing, handling, and bridge construction. This thesis focuses on the results of a preliminary laboratory study conducted in support of the instrumentation initiative. The purpose of the study was two-fold: to establish the capabilities and limitations of the VWGs and to study the buckling behavior of slender concrete elements with unbonded post-tensioning. More than sixty axial load tests were performed on two slender concrete specimens instrumented with VWGs. Observations are made on the accuracy and reliability of the VWGs. In general, the VWGs were found to be both accurate and reliable in measuring structural parameters and reporting trends in behavior, even at low loads. Some apparent errors were identified, but these were attributed to testing inconsistencies and scale factors rather than to gage error. Observations were also made on the buckling behavior of the elements under a variety of axial loading configurations. The effects of the engagement of the tensioned strand with the duct had a significant impact on the behavior. Strand engagement was shown to increase the buckling capacity of the members through stiffening action, but did not necessarily eliminate the risk of instability. Both the gage resolution study and the stability tests are expected to significantly enhance the ability of the research team to support the arch construction operations. / text
3

Health Monitoring of the Veterans' Glass City Skyway: Vibrating Wire Strain Gage Testing, Study of Temperature Gradients and a Baseline Truck Test

Bosworth, Kyle Judson January 2007 (has links)
No description available.
4

Numerical calculations of quasiparticle dynamics in a Fermi liquid

Virtanen, T. (Timo) 08 March 2011 (has links)
Abstract The problem of describing a system of many interacting particles is one of the most fundamental questions in physics. One of the central theories used in condensed matter physics to address the problem is the Fermi liquid theory developed by L. D. Landau in the 1956. The theory describes interacting fermions, and can be used to explain transport phenomena of electrons in metals and dynamics of helium three. Even when the theory is not directly applicable, it forms a basis against which other, more sophisticated theories can be compared. this thesis the Fermi liquid theory is applied to 3He-4He-mixtures at temperatures where the bosonic 4He part is superfluid, and the mechanical properties of the system are largely determined by the 3He component, treated as a degenerate normal Fermi liquid. The dynamics of strongly interacting liquid 3He can be described as a collection of quasiparticles, elementary excitations of the system, which interact only weakly. In 3He-4He mixtures the interactions can be continuously tuned by changing the temperature and the concentration of the mixture. The scattering time of quasiparticles depends on temperature, and thus the transition from the hydrodynamic limit of continuous collisions at higher temperatures to the collisionless ballistic limit at low temperatures can be studied. This gives invaluable information on the role of the interactions in the dynamics of the system. In this work, by using the Fermi liquid theory and Boltzmann transport equation, the dynamics of helium mixture disturbed by a mechanical oscillator is described in the full temperature range. The solution necessarily is numeric, but new analytical results in the low temperature limit are obtained as well. The numerical approach enables one to study various boundary conditions thoroughly, and allows application of the theory to a specic geometry. It is shown that in order to explain the experimental observations, it is necessary to take into account the reflection of quasiparticles from the walls of the container. For suitable choice of oscillator frequency and container size, second sound resonances are observed at higher temperatures, while in the ballistic limit quasiparticle interference can be seen. The numerical results are in quantitative agreement with experiments, thus attesting the accuracy of Fermi liquid theory. In particular, the previously observed decrease of inertia of a mechanical oscillator immersed in helium at low temperatures is reproduced in the calculations, and is explained by elasticity of the fluid due to Fermi liquid interactions.
5

Optimisation des couplages magnéto-mécaniques d'extensomètres à corde vibrante pour le suivi du vieillissement de constructions stratégiques / Optimization of magneto-mechanical coupling of vibrating wire strain gauges for monitoring of strategic construction aging

Mei, Bingqing 30 May 2016 (has links)
Ce mémoire porte sur l'étude et l’optimisation du fonctionnement des extensomètres à corde vibrante pour la surveillance des constructions stratégiques. Ce travail se décompose en trois étapes.Premièrement, le fonctionnement du capteur en mode amorti et en mode entretenu est décrit. Un dispositif électronique de lecture à base de microcontrôleur est réalisé pour valider les développements. Deuxième, le comportement du capteur est étudié en établissant des modèles représentant les couplages magnéto-mécaniques entre la corde vibrante, la bobine d'excitation et la bobine de mesure. Les influences du mode d'excitation et des paramètres parasites sur la réponse du capteur sont analysées. Enfin, l'effet de la foudre est simulé en utilisant un simulateur de décharge électrostatique. La réponse du capteur est mesurée avant, pendant et après la décharge. Les résultats de ce travail peuvent se résumer en quatre points essentiels. Premièrement, le mode entretenu est préférable au mode amorti. Deuxièmement, la position d'excitation optimale est au centre de la corde. De plus, une excitation continue ou une excitation pulsée d'un grand nombre de cycles est préférable à une excitation pulsée d'un petit nombre de cycles. Troisièmement, la fréquence de résonance mesurée en mode entretenu diffère de celle mesurée en mode amorti à cause de deux paramètres : la force magnétique moyenne et le couplage mutuel entre les bobines. Quatrièmement, sous l'action des décharges, le champ magnétique résiduel est modifié, conduisant ainsi à une modification de la fréquence de résonance mesurée par le capteur. / This thesis focuses on the study and the optimization of the operation of vibrating wire sensors for strategic construction monitoring. This work is divided into three stages.Firstly, the sensor operation in damped mode and in sustained mode is described. To validate the developments, an electronic microcontroller-based reading device is realized. Secondly, the sensor behavior is investigated by establishing models representing the magneto-mechanical coupling between the vibrating wire, the excitation coil and the measurement coil. The influences of excitation mode and spurious parameters on the sensor response are analyzed. Finally, the effect of lightning is simulated using electrostatic discharge simulator. The sensor response is measured before, during and after discharge.The results of this work can be summarized in four main points. Firstly, the sustained mode is preferable to the damped mode. Secondly, the optimal excitation position is at the center of the wire. Furthermore, a continuous excitation or a pulsed excitation of a large number of cycles is preferable to a pulsed excitation of a small number of cycles. Thirdly, the resonant frequency measured in sustained mode differs from that measured in damped mode due to two parameters: average magnetic force and mutual coupling between coils. Fourthly, under the action of discharges, the remaining magnetic field is modified, thus leading to a variation in the resonant frequency measured by the sensor.

Page generated in 0.1078 seconds