• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 48
  • 48
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude du comportement dynamique non linéaire des composants viscoélastiques : Caractérisation, modélisation et identification / Study of the nonlinear dynamic behavior of viscoelastic components : Characterization, modeling and identification

Jrad, Hanen 14 January 2014 (has links)
Les matériaux viscoélastiques sont utilisés dans tous les domaines de l'ingénierie et des systèmes mécaniques, de l'électroménager, spatial, l'automobile, l'aéronautique ou le génie civil (ponts...) grâce à leur capacité d’amortir les chocs ou de filtrer les vibrations. Ce travail constitue une contribution à l’étude du comportement dynamique non linéaire des composants viscoélastiques notamment les élastomères. Dans ce mémoire, on introduit, d’abord, les propriétés mécaniques des élastomères, pour les aspects viscoélasticité et friction. Un rappel des différents phénomènes physiques et une liste non-exhaustive des modèles existants dans la littérature sont présentés. Ensuite, on propose des techniques expérimentales afin de décrire le comportement dynamique sous sollicitations uniaxiales d’un élastomère. Une description des bancs d’essais, des chaines d’analyse vibratoire, des méthodes de traitement des données des essais et d’analyse des mesures expérimentales est détaillée dans ce manuscrit. Une nouvelle approche du modèle de Maxwell généralisé a été proposée pour décrire le comportement dynamique du composant viscoélastique. Ce modèle permet une description précise et une bonne connaissance du comportement dynamique des composants viscoélastiques en fonction de l’amplitude, de la précharge et de la fréquence. La dissipation d'énergie identifiée sous forme d'amortissement peut être issue de l'amortissement intrinsèque des matériaux polymère comme de la friction aux interfaces dans le cas de composants caoutchoucs non adhérisés sur les pièces, dans ce travail, un nouveau modèle visco-tribologique a été développé en couplant les propriétés rhéologiques linéaires du modèle de Maxwell généralisé et le modèle de frottement de Dahl pour la description du comportement de frottement hystérétique des liaisons viscoélastiques non adhérisées. / Viscoelastic materials are used in all areas of engineering and mechanical systems, appliances, aerospace, automotive, aerospace and civil engineering (bridges...) through their ability to absorb shock and vibration filtering. This work is a contribution to the study of nonlinear dynamic behavior of viscoelastic components particularly elastomers. In this dissertation, we introduced the mechanical properties of elastomers, for both viscoelasticity and friction aspects. A review of the different physical phenomena and a non-exhaustive list of existing models in the literature are presented. Then, we propose experimental techniques to describe the dynamic behavior under uniaxial stress of an elastomer. A description of test benches, vibration analysis chains, methods of processing data and analysis of experimental measurements is detailed in this manuscript. A new approach of generalized Maxwell model was proposed to describe the dynamic behavior of viscoelastic component. This model allows an accurate description and a good knowledge of the dynamic behavior of viscoelastic components depending on amplitude, frequency and preload. Energy dissipation identified as damping can be from intrinsic damping of the polymer as friction at the interfaces in case of not bonded rubber component to mechanical part, a new viscoelastic model tribological was developed by combining the rheological properties of linear generalized Maxwell model and the Dahl friction model for describing the behavior of viscoelastic hysteretic friction of not bonded connections.
12

Vibration suppression through stiffness variation and modal disparity

Issa, Jimmy. January 2008 (has links)
Thesis (Ph.D.)--Michigan State University. Dept. of Mechanical Engineering, 2008. / Title from PDF t.p. (viewed on July 7, 2009) Includes bibliographical references (p. 114-117). Also issued in print.
13

Tunability and sensitivity investigation of MREs in longitudinal vibration absorbers

Lerner, Anne-Marie Albanese. January 2008 (has links)
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Kenneth A Cunefare; Committee Member: Christopher Lynch; Committee Member: Massimo Ruzzene; Committee Member: Nader Sadegh; Committee Member: Reginald DesRoches. Part of the SMARTech Electronic Thesis and Dissertation Collection.
14

Crane oscillation control nonlinear elements and educational improvements /

Lawrence, Jason William. January 2006 (has links)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / William Singhose, Committee Chair ; Steven Danyluk, Committee Member ; Donna Llewellyn, Committee Member ; Nader Sadegh, Committee Member ; Neil Singer, Committee Member.
15

Vibration damping of lightweight sandwich structures

Aumjaud, Pierre January 2015 (has links)
Honeycomb-cored sandwich structures are widely used in transport for their high strength-to-mass ratio. Their inherent high stiffness and lightweight properties make them prone to high vibration cycles which can incur deleterious damage to transport vehicles. This PhD thesis investigates the performance of a novel passive damping treatment for honeycomb-cored sandwich structures, namely the Double Shear Lap-Joint (DSLJ) damper. It consists of a passive damping construct which constrains a viscoelastic polymer in shear, thus dissipating vibrational energy. A finite element model of such DSLJ damper inserted in the void of a hexagonal honeycomb cell is proposed and compared against a simplified analytical model. The damping efficiency of the DSLJ damper in sandwich beams and plates is benchmarked against that of the Constrained Layer Damper (CLD), a commonly used passive damping treatment. The DSLJ damper is capable of achieving a higher damping for a smaller additional mass in the host structure compared to the optimised CLD solutions found in the literature. The location and orientation of DSLJ inserts in honeycomb sandwich plates are then optimised with the objective of damping the first two modes using a simple parametric approach. This method is simple and quick but is not robust enough to account for mode veering occurring during the optimisation process. A more complex and computationally demanding evolutionary algorithm is subsequently adopted to identify optimal configurations of DSLJ in honeycomb sandwich plates. Some alterations to the original algorithm are successfully implemented for this optimisation problem in an effort to increase the convergence rate of the optimisation process. The optimised designs identified are manufactured and the modal tests carried out show an acceptable correlation in the trends identified by the numerical simulations, both in terms of damping per added mass and natural frequencies.
16

Engineered metallic foam for controlling sound and vibration

Cops, Mark 19 May 2020 (has links)
Many structural acoustic and vibration designs rely extensively on materials that are light-weight, stiff, and highly damped. Advanced materials such as metallic foams can be engineered to achieve these properties in order to control sound and vibration for a variety of aerospace, maritime, and ground transportation applications. In this work, the structural and acoustic properties of commercially available and digitally designed metallic foams are analyzed through numerical and experimental methods. Furthermore as a post-manufacturing process, metallic foams can be engineered in order to preferentially alter the microstructure and achieve material property enhancements. In this work, the following engineering methods are proposed and investigated: plastic deformation and material saturation. When a metallic foam is plastically deformed, the foam's porosity and pore shape are dramatically altered. This transformation in microstructure can lead directly to changes in bulk properties. In this work, a method for triaxial hydrostatic compression of metallic foams is proposed and demonstrated experimentally. The structural properties of transformed foams are tested using a load cell with digital image correlation. Transformed foams exhibit higher compliance, higher toughness, and a reduced Poisson ratio. Measurement and analysis of acoustic properties indicate that the transformed foams can absorb significantly more sound than the conventional samples of equal thickness in the test range of 0.25 - 4.50 kHz. Due to their open-cell microstructure, metallic foams can be filled with saturating materials. In this work, metallic foams saturated with viscous liquids are investigated for reducing vibration transmissibility in a structure. For the best performing saturated foam subject to a transient excitation, an order of magnitude increase in damping ratio is measured. Additionally, a composite foam (consisting of metallic foam saturated with polyurethane foam) is fabricated to enhance acoustic properties. For the best performing composite foam at normal incidence, the sound absorption coefficient is improved by a factor of 6 near 0.60 kHz and by a factor of 2 up to 4.5 kHz. Lastly, two methods for estimating acoustic absorption in metallic foams are presented which utilize finite element analysis and boundary layer theory. The proposed methods are discussed for commercially available foams as well as for representative digital designs. Limitations and assumptions of the methods pertaining to size scales and boundary layer features are addressed.
17

Experimental investigation of damping structural vibrations using the acoustic black hole effect

Bowyer, E. P. January 2012 (has links)
This thesis describes the results of the experimental investigations into some new geometrical configurations in plate-like structures materialising one-dimensional (1D) acoustic black holes for flexural waves (wedges of power-law profile) and two-dimensional (2D) acoustic black holes for flexural waves (circular indentations of power-law profile). Such acoustic black holes allow the user to reduce the amplitudes of the vibration responses of plate-like structures to a maximum effect, while not increasing the mass of the structures. This thesis also suggests some new real world practical applications for this damping technique. Initially, the effects of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power-law profile (1D black holes) were investigated, demonstrating that this method of damping is robust enough for practical applications. Then, damping of flexural vibrations in turbofan blades with trailing edges tapered according to a power-law profile has been investigated. In addition, experimental investigations into power-law profiled slots within plates have been also conducted. Another important configuration under investigation was that of circular indentations (pits) of power-law profile within the plate. In the case of quadratic or higher-order profiles, such indentations materialise 2D acoustic black holes for flexural waves. To increase the damping efficiency of power-law profiled indentations, the absorption area has been enlarged by increasing the size of the central hole in the pit, while keeping the edges sharp. The next step of investigation in this thesis was using multiple indentations of power-law profile (arrays of 2D black holes). It was shown that not only do multiple indentations of power-law profile provide substantial reduction in the damping of flexural vibrations, but also a substantial reduction in radiated sound power. The experimental results have been obtained also for a cylindrical plate incorporating a central hole of quadratic profile. They are compared to the results of numerical predictions, thus validating the results and the experimental technique. Investigations into the effects of indentations of power-law profile made in composite plates and panels and their subsequent inclusion into composite honeycomb sandwich panels are also reported. These indentations again act as 2D acoustic black holes for flexural waves and they effectively damp flexural vibrations within the panels. It was also demonstrated that these indentations can be enclosed in smooth surfaced panels and that no additional damping layer is required to induce the acoustic black hole effect in composite structures. In conclusion, it has been confirmed in this thesis that one and two-dimensional acoustic black holes represent an effective method of damping flexural vibrations and reducing the associated structure-borne sound. Furthermore, this thesis has shown that acoustic black holes can be efficiently employed in practical applications, such as trailing edges of jet engine fan blades, composite panels, and composite honeycomb sandwich structures.
18

Passive damping treatments for controlling vibration in isotropic and orthotropic structural materials

Verstappen, André Paul January 2015 (has links)
The structural vibration damping behaviour of plates and beams can be improved by the application of viscoelastic passive damping materials. Unconstrained layer damping treatments applied to metal plate systems were studied experimentally. Design and modelling of novel fibre reinforced constrained layer damping materials was performed, and implementation of these composite damping materials into laminated composite sandwich constructions commonly used as structural elements within large composite marine vessels was explored. These studies established effective methods for examining, designing and applying damping materials to metal and composite marine structures. Two test fixtures were designed and constructed to facilitate testing of viscoelastic material damping properties to ISO 6721-3 and ASTM E756. Values of material damping made in accordance with ASTM E756 over a range of temperatures were compared to values produced by a Dynamic Mechanical Analyser (DMA). Glass transition temperatures and peak damping values were found to agree well, although results deviated significantly at temperatures above the glass transition temperature. The relative influence of damping layer thickness, ambient temperature, edge conditions, plate dimensions and substrate material on the system damping performance of metal plates treated with an unconstrained viscoelastic layer was investigated experimentally. This investigation found that substrate material had the greatest influence on system damping performance, followed by damping layer thickness and plate size. Plate edge conditions were found to have little influence on the measured system damping performance. These results were dependent on the values of each variable used in the study. Modal damping behaviour of a novel fibre reinforced composite constrained layer damping material was investigated using finite element analysis and experimental methods. The material consisted of two carbon fibre reinforced polymer (CFRP) layers surrounding a viscoelastic core. Opposing complex sinusoidal fibre patterns in the CFRP face sheets were used to achieve stress-coupling by way of orthotropic anisotopy about the core. A finite element model was developed in MATLAB to determine the modal damping, displacement, stress, and strain behaviour of these complex patterned fibre constrained layer damping (CPF-CLD) materials. This model was validated using experimental results produced by modal damping measurements on CPF-CLD beam test specimens. Studies of multiple fibre pattern arrangements found that fibre pattern properties and the resulting localised material property distributions influenced modal damping performance. Inclusion of CPF-CLD materials in laminated composite sandwich geometries commonly used in marine hull and bulkhead constructions was studied experimentally. Composite sandwich beam test specimens were fabricated using materials and techniques frequently used in industry. It was found that the greatest increases in modal damping performance were achieved when the CPF-CLD materials were applied to bulkhead geometries, and were inserted within the sandwich structure, rather than being attached to the surface.
19

Optimalizace přímého pohonu posuvové osy pomocí hltiče vibrací / Optimization of the direct feed drive by the vibration damper

Hradil, Jan January 2011 (has links)
This diploma thesis deals with the application of three methods to limit resonances of critical frequencies and with a description of their influence on speed control loop of linear drive. The first damping method involved the use of an electro-magnetic tilger attached to the structure of stand on critical locations. The second method involved the use of a jerk decoupling in linear direct drives. A Cauer-filter that was activated in the controller of linear motor was added to both methods. The appropriate measuring technique for these frequencies was systematically analysed and selected. Further in this document models of mechanical structure and controlling are described. Matlab®/Simulink® software was used for the data processing and the modification of models according to the real structure.
20

The Influence of Thickness on the Complex Modulus of Air Plasma Sprayed Ceramic Blend Coatings

Hansel, Jason Edgar 12 December 2008 (has links)
No description available.

Page generated in 0.1095 seconds