• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 21
  • 12
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Guided wave evaluation of pipes using the first and second order torsional wave mode

Deere, Matthew January 2017 (has links)
Guided wave inspection is a form of ultrasonic testing used for non-destructive testing (NDT). Guided waves are capable of propagating long distances bounded by the geometries of the specimen, such as pipes and plates. The technique is commercially used to detect defects in pipelines and is capable of a full volumetric screening many metres (often up to around 100m) from one location. Fundamental axisymmetric wave modes are used to inspect pipelines and are used to quantify defects and features. However, as the technology has progressed, a demand for improving defect sensitivity, spatial resolution and developing the technology into new fields has been recognised. Operating at medium range frequencies is one possibility that could provide the increase in defect sensitivity and spatial resolution required that may not be achieved at low range frequencies. The use of higher order wave modes could also provide additional information useful for defect sizing. Guided wave inspection is a complex ultrasonic technique due to the many wave modes that exist and testing at medium range frequencies requires some challenges to be overcome. The research presented here investigates the potential of using the second order torsional wave mode at medium range frequencies and provides a new sizing technique that for some applications is likely to offer advancement in guided wave inspection and monitoring. The approach firstly included the design and implementation of a setup for analysing the complex signal responses in order to access the higher order torsional wave mode T(0,2) for defect sizing. An efficient method of using FEA has been presented using segmented models to provide the capability of analysing defects with small increment changes that could not be achieved using a full 3D model of the pipe. Using a pipe segment to virtually represent the full pipe also allowed small changes in defect size to be investigated, which would otherwise be extremely difficult to accurately machine experimentally. The FEA modelling technique is also based on broadband signals in comparison to the conventional approach of using narrowband signals and is capable of obtaining a wide frequency spectrum from one model, which significantly reduces the number of models needed to conduct a frequency analysis. Following on from this work, a high density transducer array was developed and compared against a conventional transducer array used in guided wave inspection for the purpose of medium range frequency inspection, which can also be applied to conventional low range frequency inspection. Finally, a new defect sizing method using T(0,2) is presented, which is capable of predicting the depth using peak amplitude responses from spectral analysis and by comparing this to the cut-off frequency of the remaining wall thickness of the defect. The technique has the potential to improve defect sizing, defect sensitivity, increase spatial resolution, and increase the performance of medium range inspection.
2

End-to-End Classification Process for the Exploitation of Vibrometry Data

Smith, Ashley Nicole 21 January 2015 (has links)
No description available.
3

Signature Stability in Laser Doppler Vibrometry

Iverson, Thomas Z. 24 August 2017 (has links)
No description available.
4

Static Misalignment Effects is a Self-Tracking Laser Vibrometry System for Rotating Bladed Disks

Lomenzo, Richard Allan Jr. 12 November 1998 (has links)
The application of laser Doppler vibrometry to high speed rotating structures has been hampered by technical limitations. Whereas full-field three-dimensional velocity measurements can be made on stationary structures, the capability on rotating structures is limited to low speed, one-dimensional, steady state operation. This work describes the implementation of a self-tracking laser vibrometry system which overcomes many of the limitations of current techniques for vibration measurements on rotating structures. A model of the self-tracker is developed and used to predict the effects of static misalignments on the position and velocity errors. These predictions are supported by experimental results and simplified models of the self-tracker. NOTE: (02/2011) An updated copy of this ETD was added after there were patron reports of problems with the file. / Ph. D.
5

Emission laser impulsionnelle et traitements temps-fréquence en vibrométrie par lidar à détection cohérente / Pulsed laser emission and time-frequency processing for vibrometry by coherent detection lidar

Totems, Julien 15 February 2011 (has links)
L’utilisation de lasers pulsés ouvre la voie à de nouvelles fonctionnalités et à une compacité accrue des systèmes lidars pour la mesure de vibration à distance. Or des bruits de phase et d’amplitude affectent le signal lidar, diminuant particulièrement les performances du régime impulsionnel à multiplets, concept par ailleurs prometteur pour la mesure à longue portée.Ces travaux portent d’abord sur la caractérisation expérimentale de ces bruits afin de les modéliser, en particulier l’effet de la turbulence atmosphérique. Puis nous cherchons à optimiser les formes d’ondes et le traitement du signal en fonction de la vibration et de la statistique de bruit. Nous proposons une méthode originale basée sur un estimateur du maximum de vraisemblance de la fréquence Doppler, associé à une extraction à partir de la représentation temps-fréquence du signal. L’apport de cette approche est constaté par la simulation et l’expérience, en comparant les performances de plusieurs régimes d’émission. / The use of pulsed lasers could lead to new functionnalities and increased compacity of lidar systems for remote vibration sensing. However, specific amplitude and phase noises affect the lidar signal, and particularly decrease the performance of a polypulse based emission regime, thought to be promising for very long range measurements.This work first deals with the experimental characterization of these noise sources in order to properly model them, with a focus on atmospheric turbulence. We then seek to optimize the employed waveform and signal processing in regard of the vibration and noise conditions. An original method is proposed that involves maximum likelihood based estimation of the vibration-induced Doppler shift, and its extraction from a time-frequency representation of the signal. The benefits of this approach are shown in simulation and experimentation, by comparing the performance of various emission modes.
6

COMPARATIVE EXPERIMENTAL STUDIES FOR GLOBAL DAMAGE DETECTION IN PLATES USING THE SCANNING LASER VIBROMETER TECHNIQUES

Acharya, Dabit 05 October 2006 (has links)
No description available.
7

Behaviour, ecology, and vibrational manipulation of insect vectors: the case of the meadow spittlebug Philaenus spumarius, with notes on a psyllid pest

Avosani, Sabina 13 October 2021 (has links)
Insects can cause economic and environmental damages by transmitting bacterial pathogens to plants, making the use of control and prevention measures imperative. On the other hand, methods aimed at preventing crop pests’ outbreaks, such as tilling and insecticide applications, pose a threat to human and ecosystems health. Innovative and more sustainable control methods are therefore urgently needed to address farmers’ needs and preserve ecosystem services provided by biodiversity. Biotremology is an emerging science that studies the substrate-borne vibrational signals emitted by insects to communicate and interact with their others in the environment. As many insect pests rely on these signals to communicate, their behaviour can be manipulated by transmitting vibrations to the substrate where they thrive. Vibrational signals can, for instance, interfere with target’s behaviours such as mating, feeding, and residence time on the plant, and can therefore support integrated pest management strategies alternative to insecticides. In this work, I investigated the mating behaviour and vibrational communication of two insect vectors having an important economic impact: Philaenus spumarius (Hemiptera: Aphrophoridae) and Bactericera cockerelli (Hemiptera: Triozidae). I also provided novel insights regarding the vibrational manipulation of their behaviour. I characterised the sexual behaviour and associated vibrational signals of the meadow spittlebug P. spumarius, and I described other intraspecific interactions. I evaluated the correlation between the female signalling activity and development of the reproductive organs, suggesting that a vibrational mating disruption could be effective only if applied from the onset of egg maturation, which triggers the female proceptivity (from August onwards). Besides gathering behavioural data, I used occupancy models to estimate P. spumarius presence and detection probability in Trentino (Northern Italy), a rarely deployed approach to study insect distribution. Site covariates impacted P. spumarius detectability, suggesting that spittlebug presence can be overlooked if detection is not considered. As plant composition influences the presence and abundance of the spittlebug, I studied the association between P. spumarius and its host plants. Such information can support monitoring programs and control strategies aimed at reducing P. spumarius population in crops of interest by shaping the plant composition of the ground cover. After investigating the behaviours and the ecology of the spittlebug, I attempted to disrupt its feeding activity using vibrations, opening the gates for future research. In this regard, I combined for the first time biotremology with the Electrical Penetration Graph (EPG) technique. The tomato potato psyllid B. cockerelli is an important threat to New Zealand crops. Besides the characterisation of the pair formation process and associated vibrational signals, I used vibrations to disrupt mate finding by transmitting vibrations to the host plant. Given that the stimulus attracted male psyllids at small scale, this strategy is a feasible approach that could be implemented for use in fields and greenhouses. In this way, an innovative trapping and mating disruption device could join the farmers’ toolbox for monitoring and controlling B. cockerelli. In conclusion, I provided new information regarding the ethology of two insect vectors and suggested that there is room for applied biotremology to support sustainable management strategies.
8

Development of a modular interferometric microscopy system for characterization of MEMS

Klempner, Adam R. 04 January 2007 (has links)
One of the key measurement devices used in characterization of microelectromechanical systems (MEMS) is the interferometric microscope. This device allows remote, noninvasive measurements of the surface shape and deformations of MEMS in full-field-of-view with high spatial resolution and nanometer accuracy in near real-time. As MEMS are becoming more prevalent in the areas of consumer products and national defense, the demand for a versatile and easy to use characterization system is very high. This Thesis describes the design, implementation, and use of an interferometric system that is based on modular components which allow for many loading and measurement capabilities, depending on a specific application. The system has modules for subjecting MEMS to vacuum and dry gas environments, mechanical vibration excitation, thermal loads (both heating and cooling), and electrical loads. Three interferometric measurement modules can be interchanged to spatially measure shape and deformation of micro- and/or meso-scale objects, and temporally measure vibrations of these objects. Representative examples of the measurement and loading capabilities of the system are demonstrated with microcantilevers and a microgyroscope.
9

Development of novel diagnostic techniques to measure heat release rate perturbations in flames

Li, Jingxuan 30 January 2012 (has links) (PDF)
Heat release rate disturbances are the sources of additional thermal stresses, direct and indirect combustion noise and undesirable vibrations. In extreme cases, these perturbations may even cause destructive combustion instabilities. These quantities are difficult to measure in practical burners. The objective of this work is to develop two alternative diagnostics to measure heat release rate fluctuations in unsteady flames. These techniques are validated in generic configurations for perfectly premixed laminar flames. The first method is an acoustic technique, which is based on the measurement of the travel time of ultrasonic waves through the flames. Fluctuations of the sound propagation time transmission through unsteady flames are used to estimate perturbations in the burned gases width along the acoustic path. This information is then used to reconstruct heat release rate fluctuations. This technique is validated in the cases of unstable laminar premixed flames driven by buoyancy forces and for flames submitted to harmonic flow velocity modulations. Analytical expressions are derived linking fluctuations in heat release rate and disturbances of the sound travel time. Measurements made with this acoustic technique are compared with optical detections based on the flame chemiluminescence and with predictions from an analytical model. Good agreements are obtained between these different methods validating the proposed technique. The second method envisaged is an optical technique based on a Laser Interferometric Vibrometer used to measure integrated density perturbations along the optical path of a laser beam. It is shown that density disturbances along this path result mainly from heat release rate fluctuations when the flames are confined. A link is established to reconstruct heat release rate disturbances from the signal of the interferometer. The technique is validated in the case of pulsated laminar premixed flames. Measurements are compared to line-of-sight integrated chemiluminescence emission measurements. A good agreement is obtained for harmonic flow modulations at different forcing frequencies and perturbation levels for flames operating at different flow conditions. This work validates the principle of this alternative technique for detecting heat release rate perturbations.
10

Laser doppler vibrometer for efficient structural health monitoring

Sharma, Vinod K. 17 November 2008 (has links)
The research effort in this thesis is devoted to develop techniques to accurately and rapidly identify the location, orientation, and magnitude of the defects by using structural health monitoring concepts that use Laser Doppler Vibrometer as a non-contact sensor with multi-point sensing capability. The first research area addresses the formulation and validation of an innovative Damage Measure that is based on the ratios of the strain energy distributions of the damaged and undamaged structure. The innovations include use of a single set of actuator/sensor pair to excite and detect the responses of a structure for low frequency vibrations as well as guided wave propagation studies. A second new capability is the estimation of the Damage Measure without requiring any knowledge of the undamaged baseline structure. This method is made possible because of the development of these new technologies: Spatial Decimation and Wavenumber/Frequency filtering. The third contribution is to develop analytical models for the structural dynamics of damaged structure and seek solutions that use perturbation methods to detect damage in a plate structure. The fourth contribution is the development of a comprehensive damage detection technique over a wide frequency dynamic range. The fifth topic of research involves automation in Structural Health Monitoring based on the comprehensive Damage Measure formulation. Under the control of software the Scanning Laser Doppler Vibrometer is used to acquire the low frequency vibration mode data for a coarse identification of all the suspect regions of damage using a threshold criterion on the Damage Measure. Each suspect region of damage is further investigated using the high frequency elastic wave propagation to clearly identify the location, orientation, and extent of the damage. The computer control of the Laser Doppler Vibrometer and a quantitative assessment of the damage provide the enabling technologies for the automation proof of concept. Finally the developed techniques of damage detection are successfully demonstrated on practical structures such as a turbine blade in the laboratory and an F-15 vertical tail in field maintenance conditions

Page generated in 0.0365 seconds