• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Layered Video Multicast Using Fractional Frequency Reuse over Wireless Relay Networks

Chen, Ying-Tsuen 27 September 2011 (has links)
Multimedia services over wireless networks are getting popular. With multicast many mobile stations can join the same video multicast group and share the same radio resource to increase frequency utilization efficiently. However users may locate at different positions so as to suffer different path loss, interference and receive different signal to interference and noise ratio (SINR). Users at the cell-edge receiving lower SINR may degrade the multicast efficiency. In this thesis we propose four schemes considering fractional frequency reuse (FFR) over relay networks to reuse frequency in multi-cells. With fractional frequency reuse, users close to the base station (BS) have more resources to improve the total frequency utilization. A resource allocation scheme is also proposed to efficiently allocate wireless resources. Compared to the conventional relay scheme, the proposed schemes can provide more than 10% video layers for all users and give better video quality for users near BS.
2

Multiple Description Video Communications in Wireless Ad Hoc Networks

Cheng, Xiaolin 29 June 2005 (has links)
As developments in wireless ad hoc networks continue, there is an increasing expectation with regard to supporting content-rich multimedia communications (e.g., video) in such networks, in addition to simple data communications. The recent advances in multiple description (MD) video coding have made it highly suitable for multimedia applications in such networks. In this thesis, we study three important problems regarding multiple description video communications in wireless ad hoc networks. They are multipath routing for MD video, MD video multicast, and joint routing and server selection for MD video in wireless ad hoc networks. In multipath routing for MD video problem, we follow an applicationcentric cross-layer approach and formulate an optimal routing problem that minimizes the application layer video distortion. We show that the optimization problem has a highly complex objective function and an exact analytic solution is not obtainable. However, we find that a metaheuristic approach such as Genetic Algorithms (GAs) is eminently effective in addressing this type of complex cross-layer optimization problems. We provide a detailed solution procedure for the GA-based approach, as well as a tight lower bound for video distortion. We use numerical results to compare this approach to several other approaches and demonstrate its superior performance. In MD video multicast problem, we take the similar application-centric, cross-layer approach as in the multipath routing problem. We propose an MD video multicast scheme where multiple source trees are used. Furthermore, each video description is coded into multiple layers in order to cope with diversity in wireless link bandwidths. Based on this multicast model, we formulate the multicast routing as a combinatorial optimization problem and apply Genetic Algorithm (GA)-based metaheuristic procedure to solove this problem. Performance comparisons with existing approaches show significant gains for a wide range of network operating conditions. In the last problem, we study the important problem of joint routing and server selection for MD video in ad hoc networks. We formulate the task as a combinatorial optimization problem and present tight lower and upper bounds for the achievable distortion. The upper bound also provides a feasible solution to the formulated problem. Our extensive numerical results show that the bounds are very close to each other for all the cases studied, indicating the near-global optimality of the derived upper bounding solution. Moreover, we observe significant gains in video quality achieved by the proposed approach over existing server selection schemes. This justifies the importance of jointly considering routing and server selection for optimal MD video streaming in wireless ad hoc networks. / Master of Science

Page generated in 0.0592 seconds