Spelling suggestions: "subject:"vindkraftpark"" "subject:"vindkraftsparker""
1 |
Projektering av vindkraftspark i Juddhult, SmålandPettersson, Daniel, Svantesson, Per January 2008 (has links)
<p>The aim with this study was to collect fundamental information, and to plan, a wind</p><p>power farm in Juddhult , Småland in southern Sweden. The goal is to collect the best</p><p>available projecting planning support. The pieces of this projecting planning support</p><p>that will be presented is; Environmental Consequence Description (MKB), production</p><p>calculations, comparisons between different plant types, economic calculations, evaluate</p><p>the economy and give some farm design suggestions. The imagined wind farm will be</p><p>located in forest environment and which may cause a number of new problems. Special</p><p>interest that will be affected, where special consideration because of the forest</p><p>environmental is requested is, hunting, wetlands, ancient monuments and wind</p><p>turbulence. To perform calculations of expected energy transformation, sound-, shadowand</p><p>landscape influence the program WindPro has been used for these calculations. The</p><p>economic calculation methods used in this project is the annual method and electricity</p><p>price prognosis. Among the results some interesting KPI (Key Performince Indicator) for</p><p>the wind farm is presented. To be able to do a risk analysis three scenarios has been</p><p>created, the worst case scenario, the most likely scenario and the best possible scenario.</p>
|
2 |
Projektering av vindkraftspark i Juddhult, SmålandPettersson, Daniel, Svantesson, Per January 2008 (has links)
The aim with this study was to collect fundamental information, and to plan, a wind power farm in Juddhult , Småland in southern Sweden. The goal is to collect the best available projecting planning support. The pieces of this projecting planning support that will be presented is; Environmental Consequence Description (MKB), production calculations, comparisons between different plant types, economic calculations, evaluate the economy and give some farm design suggestions. The imagined wind farm will be located in forest environment and which may cause a number of new problems. Special interest that will be affected, where special consideration because of the forest environmental is requested is, hunting, wetlands, ancient monuments and wind turbulence. To perform calculations of expected energy transformation, sound-, shadowand landscape influence the program WindPro has been used for these calculations. The economic calculation methods used in this project is the annual method and electricity price prognosis. Among the results some interesting KPI (Key Performince Indicator) for the wind farm is presented. To be able to do a risk analysis three scenarios has been created, the worst case scenario, the most likely scenario and the best possible scenario.
|
3 |
Reactive power compensation of the electricity grid with large-scale offshore wind farms in Sweden : Technical capabilities, grid codes and economic incentivesBråve, Agnes, Särnblad, Sara January 2022 (has links)
Year 2040 the goal is to have a 100 % renewable Swedish energy system. Svenska kraftnät (Svk) predicts fully decommissioned nuclear power plants and an increased amount of connected wind power plants, especially offshore, year 2045. These kind of renewable power plants are non-synchronous and do not provide the grid with the same system stability services naturally as synchronous generators, such as nuclear power plants. With the increased number of renewables connected, one future challenge is to maintain the stability of the power grid. Grid stability can be divided into voltage-, frequency- and rotor angle stability.This thesis has investigated how large-scale offshore wind power plants (OWPPs) can contribute with reactive power compensation and in turn voltage stability to a nearby onshore power grid in Sweden. The evaluation has been done from the perspective of the TSO and the OWPP owner interests, with a focus on grid codes, economic incentives and technical capabilities.This project has been made in three parts. First, a comparison of voltage stability control requirements in different European grid codes was made. Secondly, static power flow simulations of a case study of a 1000 MW OWPP have been performed in PowerWorld Simulator, testing the OWPP’s reactive power outputs under different circumstances. Thirdly, a market opportunity analysis has been completed, analyzing reactive power market opportunities for OWPPs as well as for TSOs.The study shows that the reactive power capabilities of the simulated OWPP is considerable higher than the Swedish grid codes requires. Thus, an opportunity is to make the grid codes stricter, in combination with economic incentives. The case study showed that the distance offshore has an impact of the reactive power reaching the grid onshore. Though, the OWPP’s contribution to local voltage stability onshore is considered as good. Finally, with short- and long-term contracts, a reactive power market can be favorable for both the OWPP owner and the TSO.
|
Page generated in 0.0589 seconds