• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structures of Poliovirus and Antibody Complexes Reveal Movements of the Capsid Protein VP1 During Cell Entry

Lin, Jun 06 July 2011 (has links) (PDF)
In the infection process, native poliovirus (160S) first converts to a cell-entry intermediate (135S) particle, which causes the externalization of capsid proteins VP4 and the N-terminus of VP1 (residues 1-53). The externalization of these entities is followed by release of the RNA genome, leaving an empty (80S) particle. Three antibodies were utilized to track the location of VP1 residues in different states of poliovirus by cryogenic electron microscopy (cryo-EM). "P1" antibody binds to N-terminal residues 24-40 of VP1. Three-dimensional reconstruction of 135S-P1 showed that P1 binds to a prominent capsid peak known as the "propeller tip". In contrast, our initial 80S-P1 reconstruction showed P1 Fabs also binding to a second site, ~60 Å distant, at the icosahedral twofold axes. Analysis of 80S-P1 reconstructions showed that the overall population of 80S-P1 particles consisted of three kinds of capsids: those with P1 Fabs bound only at the propeller tips; only at the twofold axes; or simultaneously at both positions. Our results indicate that, in 80S particles, a significant fraction of VP1 can deviate from icosahedral symmetry. Similar deviations from icosahedral symmetry may be biologically significant during other viral transitions. "C3" antibody binds to 93-103 residues (BC loop) of VP1. The C3 epitope shifts outwards in radius by 4.5% and twists through 15° in the 160S-to-135S transition, but appears unchanged in the 135S-to-80S transition. In addition, binding of C3 to either 160S or 135S particles causes residues of the BC loop to move an estimated 5 (±2) Å, indicating flexibility. The flexibility of BC loop may play a role in cell-entry interactions. At 37°C, the structure of poliovirus is dynamic, and internal polypeptides VP4 and the N-terminus of VP1 externalize reversibly. An antibody, binding to the residues 39-55 of VP1, was utilized to track the location of the N-terminus of VP1 in 160S particle in the "breathing" state. The resulting reconstruction showed the capsid expands similarly to the irreversibly altered 135S particle, but the N-terminus of VP1 is located near the twofold axes, instead of the propeller tip as in 135S particles.

Page generated in 0.105 seconds