Spelling suggestions: "subject:"virus proteins""
61 |
Studies on influenza A virus PB1-F2 proteinVater, Sandra January 2011 (has links)
The influenza A virus genome codes for up to 12 proteins. Segment 2 encodes three proteins, the polymerase subunit PB1, a small protein PB1-F2 and an N-terminally truncated version of PB1 called N40. Different functions have been reported for PB1-F2 such as induction of apoptosis, regulation of the viral polymerase activity, enhancement of secondary bacterial infections and modulation of the innate immune system. So far, no function has been ascribed to N40. To study PB1-F2 in more detail, its coding sequence was deleted from its original position and inserted downstream of the PB1 (segment 2), NA (segment 6) or M (segment 7) open reading frames (ORF) employing different strategies, including the use of an overlapping Stop-Start cassette, a duplicated promoter sequence and the self-cleaving 2A peptide derived from foot-and-mouth disease virus. Viruses with bicistronic segments were rescued and tested for their ability to express PB1-F2. Whereas no expression of PB1-F2 was detected from bicistronic segments 2 and 7, expression of PB1-F2 from segment 6 was observed in high levels. However, the phenotype of all these viruses was similar to that of viruses lacking PB1-F2 which made mutational analysis of PB1-F2 not worthwhile. Previously, the function of PB1-F2 was mainly studied using a virus deficient in PB1-F2 production but showing increased N40 expression. In the present study, recombinant WSN viruses lacking either PB1-F2 or N40, or both proteins were engineered and the effects of these mutations on the viral life cycle were examined. Viruses deficient for PB1-F2 that overexpressed N40 showed the most attenuated phenotype, whereas the loss of PB1-F2 alone did not obviously affect virus replication. Reduced viral polymerase activity was observed for viruses lacking N40, however attenuation in vivo was only seen in combination with the loss of PB1-F2. Neither the loss of PB1-F2 nor N40 alone had a great impact, but changes in the expression level of both proteins were disadvantageous for the virus. Increased levels of N40 shifted the polymerase activity towards replication, suggesting a new function for N40. Thus, it was shown that the segment 2 gene products and their expression level influence viral replication and pathogenicity, and a careful design of mutant recombinant viruses is vital for determining the experimental outcome.
|
62 |
Cytokine dysregulation by human immunodeficiency virus-1 transactivating proteinYim, Chi-ho, Howard., 嚴志濠. January 2006 (has links)
published_or_final_version / abstract / Paediatrics and Adolescent Medicine / Master / Master of Philosophy
|
63 |
Cloning, expression, purification and functional characterization of non-structural protein 10 (nsp10) and RNA-dependent RNA polymerase (RdRp) of SARS coronavirus. / Cloning, expression, purification & functional characterization of non-structural protein 10 (nsp10) & RNA-dependent RNA polymerase (RdRp) of SARS coronavirusJanuary 2006 (has links)
Ho Hei Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 189-199). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemiology of the Severe Acute Respiratory Syndrome (SARS) Outbreak --- p.2 / Chapter 1.2 --- The SARS Coronavirus --- p.3 / Chapter 1.2.1 --- Genome organization --- p.7 / Chapter 1.2.2 --- Structural proteins --- p.9 / Chapter 1.2.3 --- Non-structural proteins --- p.11 / Chapter 1.3 --- Introduction to SARS-CoV nsp10 Protein --- p.14 / Chapter 1.4 --- Introduction to SARS-CoV RNA-dependent RNA Polymerase (RdRp) Protein --- p.17 / Chapter 1.5 --- Objectives of the Present Study --- p.25 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of Glutathione S-Transferase (GST) Fusion/Green Fluorescence Protein (GFP) N1 and C1 Fusion nsplO --- p.26 / Chapter 2.1.1 --- Primer design --- p.26 / Chapter 2.1.2 --- Gene amplification by PCR --- p.28 / Chapter 2.1.3 --- Purification of PCR product --- p.30 / Chapter 2.1.4 --- Enzyme restriction --- p.31 / Chapter 2.1.5 --- Ligation --- p.33 / Chapter 2.1.6 --- Transformation --- p.34 / Chapter 2.1.6.1 --- Preparation of competent cell DH5α --- p.34 / Chapter 2.1.7 --- Mini scale plasmid preparation --- p.36 / Chapter 2.2 --- Subcellular Localization Study --- p.39 / Chapter 2.2.1 --- Midi scale plasmid preparation --- p.39 / Chapter 2.2.2 --- Transfection of GFP recombinant plasmids --- p.41 / Chapter 2.2.2.1 --- Cell culture of Vero E6 cell line --- p.41 / Chapter 2.2.2.2 --- Lipofectamine based transfection --- p.41 / Chapter 2.2.3 --- Fluorescent microscopic visualization --- p.42 / Chapter 2.2.4 --- Western blotting for GFP fusion protein expression --- p.43 / Chapter 2.2.4.1 --- Protein extraction --- p.43 / Chapter 2.2.4.2 --- Protein quantification --- p.44 / Chapter 2.2.3.4 --- SDS-PAGE analysis --- p.45 / Chapter 2.3 --- "Expression of GFP-nsp10 in Vero E6 cells, SARS-CoV Infected Vero E6 Cells and Convalescent Patients' Serum" --- p.47 / Chapter 2.3.1 --- Cell-based immunostaining of VeroE6 cells and SARS-CoV infected Vero E6 cells --- p.47 / Chapter 2.3.1.1 --- Immobilization of Vero E6 cells and SARS-CoV infected Vero E6 cells --- p.47 / Chapter 2.3.1.2 --- Preparation of monoclonal antibodies against SARS-CoV nsp10 --- p.48 / Chapter 2.3.1.3 --- Immunostaining of SARS-CoV nsp10 in Vero E6 cells and SARS-CoV VeroE6 cells --- p.48 / Chapter 2.3.1.4 --- Fluorescent microscopic visualization --- p.49 / Chapter 2.3.2 --- Detection of SARS-CoV nsplO expression in SARS-CoV infected convalescent patients' serum --- p.50 / Chapter 2.3.2.1 --- Western blotting of SARS-CoV nsp10 by SARS-CoV infected convalescent patients' serum --- p.50 / Chapter 2.4 --- Expression of GST fusion SARS-CoV nsp10 in E.coli --- p.51 / Chapter 2.4.1 --- Preparation of competent cells --- p.51 / Chapter 2.4.2 --- Small scale expression --- p.51 / Chapter 2.4.3 --- Large scale expression of GST-nsp10 in optimized conditions --- p.54 / Chapter 2.5 --- Purification of GST fusion SARS-CoV nsp10 --- p.55 / Chapter 2.5.1 --- Glutathione Sepharose 4B affinity chromatography --- p.55 / Chapter 2.5.2 --- Superdex 75 gel filtration chromatography --- p.56 / Chapter 2.6 --- "CD Measurement, NMR and Crystallization Study of SARS-CoV nsp10" --- p.57 / Chapter 2.6.1 --- CD measurement --- p.57 / Chapter 2.6.2 --- NMR spectroscopy --- p.58 / Chapter 2.6.3 --- Crystallization of nsp10 --- p.58 / Chapter 2.7 --- "Glutathione-S-Sepharose Pull-down assay, 2D Gel Electrophoresis and Mass Spectrometry" --- p.59 / Chapter 2.7.1 --- GST pull-down assay --- p.59 / Chapter 2.7.2 --- Two-dimension gel electrophoresis --- p.59 / Chapter 2.7.2.1 --- First dimensional isoelectric focusing (IEF) --- p.59 / Chapter 2.7.2.2 --- Second dimension SDS-PAGE --- p.60 / Chapter 2.7.2.3 --- Silver staining --- p.61 / Chapter 2.7.3 --- Protein identification by mass spectrometry --- p.63 / Chapter 2.7.3.1 --- Data acquisition --- p.65 / Chapter 2.8 --- Proliferative study of SARS-CoV nsp10 in VeroE6 Cell Line and Mouse Splenocytes --- p.66 / Chapter 2.8.1 --- Assay of mitogenic activity by 3H-thymidine incorporation --- p.66 / Chapter 2.9 --- "Cloning, Expression and Purification of GST fusion SARS-CoV RNA-dependent RNA Polymerase (RdRp) Full- length Protein" --- p.67 / Chapter 2.9.1 --- Construction of GST-RdRp-full length expression plasmid --- p.67 / Chapter 2.9.2 --- Expression and purification of GST-RdRp full-length protein --- p.68 / Chapter 2.10 --- "Cloning, Expression and Purification of GST Fusion SARS-CoV RNA-dependent RNA Polymerase (RdRp) Catalytic Domain" --- p.70 / Chapter 2.10.1 --- Construction of GST-RdRp Catalytic Domain (p64) and MBP-RdRp-p64 expression plasmids --- p.70 / Chapter 2.10.2 --- Expression and purification of GST fusion catalytic domain of SARS-CoV RdRp (GST-p64) --- p.71 / Chapter 2.10.3 --- Expression and purification of MBP fusion catalytic domain of SARS-CoV RdRp --- p.72 / Chapter 2.11 --- "Cloning, Expression and Purification of the His-thioredoxin Fusion N-terminal Domain of SARS-CoV RdRp (pET32h-pl2)" --- p.74 / Chapter 2.11.1 --- Construction of His-thioredoxin fusion N-terminal domain of SARS-CoV RdRp (pET32h-pl2) expression plasmid --- p.74 / Chapter 2.11.2 --- Expression and purification of His- thioredoxin fusion N-terminal domain of SARS-CoV RdRp (pET32h-pl2) --- p.74 / Chapter 2.12 --- Interaction Study of RdRp Catalytic Domain and N-terminal Domain --- p.76 / Chapter 2.13 --- Electrophoretic Mobility Shift Assay of SARS-CoV Genomic RNA Strands with RdRp Full-length sequence --- p.76 / Chapter 2.13.1 --- Preparation of RNA transcripts --- p.76 / Chapter 2.13.2 --- EMSA --- p.77 / Chapter 2.14 --- Non-radiometric and Radiometric RdRp Assays --- p.78 / Chapter 2.14.1 --- Non-radiometric RdRp assay--luciferase coupled enzyme assay --- p.78 / Chapter 2.14.2 --- Radiometric RdRp assay ´ؤ filter-binding enzyme assay --- p.79 / Chapter 2.15 --- Western Blot Analysis for Interaction Study --- p.80 / Chapter Chapter 3 --- Results and Discussion on SARS-CoV nsplO --- p.81 / Chapter 3.1 --- "Cloning, Expression and Purification of SARS-CoV nsp10 in Prokaryotic Expression System" --- p.81 / Chapter 3.1.1 --- Cloning and expression of SARS-CoV nsp 10 --- p.81 / Chapter 3.1.2 --- Purification of GST-nsp10 by GST affinity chromatography --- p.84 / Chapter 3.1.3 --- Purification of nsp10 by size exclusion chromatography --- p.85 / Chapter 3.1.4. --- "Yield, purity and stability of SARS-CoV nsp 10" --- p.88 / Chapter 3.2 --- SARS-CoV nsp10 Sequence Alignment and Protein Structure Prediction --- p.89 / Chapter 3.2.1. --- Sequence alignment of SAR-CoV nsp10 with known viral proteins --- p.91 / Chapter 3.2.2 --- Protein structure prediction - homology modeling --- p.93 / Chapter 3.3 --- Circular Dichroism Analysis of nsp10 --- p.96 / Chapter 3.3.1 --- CD spectrum of SARS-CoV nsp10 --- p.98 / Chapter 3.3.2. --- Effect of divalent metal ions on SARS-CoV nsp10 --- p.99 / Chapter 3.4 --- Nuclear Magnetic Resonance Analysis of nsp10 --- p.101 / Chapter 3.4.1 --- Sample preparation for NMR Experiment --- p.102 / Chapter 3.4.2 --- Protein structure determination by NMR --- p.103 / Chapter 3.5 --- Crystallization of SARS-CoV nsp10 --- p.105 / Chapter 3.5.1 --- Sample preparation of nsp10 for crystallization --- p.105 / Chapter 3.5.2 --- Screening conditions for crystallization --- p.106 / Chapter 3.6 --- "Antigenic, Immunofluorescene and Subcellular Localization Studies on the SARS-CoV nsp10" --- p.110 / Chapter 3.6.1 --- Antigenic and immunofluorescene studies on the SARS-CoV nsp10 --- p.110 / Chapter 3.6.2 --- Subcellular localization of SARS-CoV nsp10 --- p.115 / Chapter 3.7 --- Proliferative Study of nsp10 --- p.120 / Chapter 3.7.1. --- Influence of proliferative effect on the host cell --- p.121 / Chapter 3.8 --- A Proteomics Strategy for Interaction Study of nsp10 --- p.124 / Chapter 3.8.1 --- 2D SDS-PAGE analysis of proteins associating with the nsp10 bait --- p.125 / Chapter 3.8.2 --- Silver staining of proteins associating with the nsp10 bait and their identification by mass spectrometry --- p.127 / Chapter 3.9 --- Discussion on SARS-CoV nsp10 --- p.129 / Chapter Chapter 4 --- Results and Discussion on SARS-CoV RdRp / Chapter 4.1 --- "Cloning, Expression and Purification of SARS-CoV RdRp Full-length, Catalytic Domain and N-terminal Domain" --- p.139 / Chapter 4.2 --- Interaction Study of RdRp Catalytic Domain and its N-terminal Domain --- p.147 / Chapter 4.3 --- Functional Analysis of RNA Binding by the SARS-CoV RdRp --- p.149 / Chapter 4.4 --- Characterization of RdRp by Non-radioactive RdRp Assay ´ؤ Luciferase-coupled Enzyme Assay --- p.152 / Chapter 4.5 --- Characterization of RdRp by Radioactive RdRp Assay ´ؤ 32P Incorporation Assay --- p.157 / Chapter 4.6 --- Discussion on SARS-CoV RdRp --- p.161 / Chapter Chapter 5 --- General Discussion / General Discussion --- p.170 / Appendix --- p.172 / References --- p.189
|
64 |
Substrate specificity of severe acute respiratory syndrome coronavirus main protease.January 2006 (has links)
Chong Lin-Tat. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 76-78). / Abstracts in English and Chinese. / Chapter Chapter 1 --- introduction / Chapter 1.1 --- Severe acute respiratory syndrome Coronavirus (SARS CoV) --- p.13 / Figure 1.1 Genome organization and putative functional ORFs of SARS CoV --- p.14 / Chapter 1.2 --- SARS main protease / Chapter 1.2.1 --- Three dimensional structure --- p.15 / Figure 1.2 Ribbon illustration of the SARS-coronavirus main protease --- p.17 / Figure 1.3 Surface representations of P1 and P2 substrate-binding pocket of main protease --- p.18 / Chapter 1.2.2 --- Substrate specificities --- p.19 / Table 1.1. Eleven predicted cleavage sites of SARS CoV main protease --- p.21 / Chapter 1.3 --- Protein-based FRET assay system --- p.22 / Figure 1.4. The principle of fluorescent resonance energy transfer (FRET) --- p.24 / Chapter 1.4 --- Objectives --- p.25 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- General Techniques / Chapter 2.1.1 --- Preparation and transformation of competent E. coli DH5a and23 BL21 (DE3)pLysS --- p.26 / Chapter 2.1.2 --- Minipreparation of plasmid DNA (Invitrogen) --- p.27 / Chapter 2.1.3 --- Spectrophotometric quantitation DNA --- p.28 / Chapter 2.1.4 --- Agarose gel electrophoresis / Chapter 2.1.5 --- Purification of DNA from agarose gel (Invitrogen) / Chapter 2.1.6 --- Restriction digestion of DNA fragments --- p.29 / Chapter 2.1.7 --- Ligation of DNA fragments into vector / Table 2.1. Standard recipe of ligation reaction --- p.30 / Chapter 2.1.8 --- SDS-PAGE electrophoresis --- p.31 / Table 2.2. Standard recipe of separating gel for SDS-PAGE --- p.32 / Table 2.3. Standard recipe of stacking gel for SDS-PAGE --- p.33 / Chapter 2.2 --- Sub-cloning and site-directed mutagenesis / Chapter 2.2.1 --- Sub-cloning of SARS Co V main protease --- p.34 / Chapter 2.2.2 --- Sub-cloning of Substrate / Chapter 2.2.3 --- Site-directed mutagenesis of substrate variant --- p.35 / Table 2.4 Primer sequence for generating substrate variants --- p.36 / Table 2.5. Standard recipe of Polymerase Chain Reaction (PCR) --- p.40 / Table 2.6. Polymerase Chain Reaction (PCR) profile --- p.41 / Chapter 2.3 --- Sample preparation / Chapter 2.3.1 --- Expression of recombinant proteins --- p.42 / SARS CoV main protease / Substrate and substrate variants / Chapter 2.3.2 --- Purification of recombinant proteins / SARS CoV main protease / Substrate and substrate variants / Chapter 2.4 --- Protein-based FRET kinetic analysis --- p.45 / Chapter 2.5 --- A model for substrate-enzyme binding by docking simulation --- p.46 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Preparation of SARS CoV main protease and substrate / Chapter 3.1.1 --- Expression and purification of SARS main protease --- p.48 / Figure 3.1. Purification profile of SARS CoV main protease --- p.49 / Chapter 3.1.2 --- Expression and purification of substrate and substrate variants --- p.50 / Figure 3.2. Purification profile of substrate and substrate variants --- p.51 / Chapter 3.2 --- A novel protein-based FRET assay system was established / Chapter 3.2.1 --- "With the cleavage of active main protease, absorbance at 528nm dropped while signal at 485nm were slightly increased" --- p.52 / Figure 3.3. Absorbance at 528nm dropped and 485nm increased with the substrate hydrolysis --- p.53 / Chapter 3.2.2 --- FRET efficiency ratio (528/485) decreased over time --- p.54 / Figure 3.4. FRET efficiency ratio (528/485) decreased over time --- p.55 / Chapter 3.2.3 --- Comparable kcat/Km value of SARS CoV main protease was obtained --- p.56 / Figure 3.5. Catalytic parameter (kcat/ Km) was determined from the slope of straight Line --- p.57 / Chapter 3.3 --- Main protease activity towards substrate variants at different substrate-binding sites (S2'-S2) --- p.58 / Table 3.1. Kinetic parameterrs of 76 substrate variants in descending order --- p.59 / Chapter 3.3.1 --- S2'substrate-binding site --- p.60 / Chapter 3.3.2 --- S1' substrate-b inding site / Chapter 3.3.3 --- S1 substrate-binding site / Chapter 3.3.4 --- S2 substrate-binding site / Figure 3.6. Kinetic analysis of some typical substrate variants against main protease --- p.62 / Figure 3.7. SDS-PAGE analysis of some typical substrate variants against main protease --- p.63 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Quantitative and high-throughput analysis by protein-based FRET assay system --- p.64 / Chapter 4.2 --- Substrate specificities of SARS CoV main protease at S2'-S2 subsites / Chapter 4.2.1 --- β-strand conformation was preferred at S2,subsite / Chapter 4.2.2 --- Residues with small aliphatic side chain were preferred at S1 ´ة subsite --- p.65 / Chapter 4.2.3 --- "Glutamine at S1 subsite was absolutely conserved, but alternatives were disclosed" --- p.66 / Figure 4.1. Glutamine was not absolutely conserved in S1 subsite --- p.67 / Chapter 4.2.4 --- Hydrophilic residues were tolerated at S2 subsite --- p.68 / Figure 4.2. Hydrophilic residues were tolerated at S2 subsite --- p.70 / Table 4.1. Summary of types of residues preferred at individual subsites --- p.71 / Chapter 4.3 --- Predicted conformation of substrate towards SARS CoV main protease at S2' and S1' subsites --- p.72 / Figure 4.3. Small residues were preferred at S1´ة subsite and Val at S2' subsite was more favoured than the native one --- p.73 / Chapter Chapter 5 --- Summary --- p.74 / Chapter Chapter 6 --- Future work --- p.75 / References --- p.76
|
65 |
The roles of non structural protein NS1 from influenza virus A, B and C on cytokine dysregulation and cellular gene expression.January 2008 (has links)
Chan, Wing Tung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 129-152). / Abstracts in English and Chinese. / Acknowledgements --- p.2 / Abstract --- p.3 / 摘要 --- p.5 / Table of Contents --- p.7 / List of Abbreviations and symbols --- p.13 / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemics and pandemics of influenza virus --- p.17 / Chapter 1.2 --- Biology of influenza virus --- p.19 / Chapter 1.2.1 --- Types of influenza virus --- p.19 / Chapter 1.2.2 --- Viral structure and viral proteins --- p.20 / Chapter 1.2.3 --- Life cycle of influenza virus --- p.21 / Chapter 1.2.4 --- An ever-changing virus --- p.22 / Chapter 1.3 --- Pathogenesis and immunology of influenza virus --- p.24 / Chapter 1.3.1 --- Diseases and symptoms caused by influenza virus infection --- p.24 / Chapter 1.3.2 --- Production of cytokines during influenza virus infection --- p.25 / Chapter 1.3.3 --- Immune responses in the hosts --- p.27 / Chapter 1.4 --- Non-structural protein 1 (NS1) --- p.28 / Chapter 1.4.1 --- Overview of NS1 --- p.28 / Chapter 1.4.2 --- Roles of NS1 in influenza virus infection --- p.29 / Chapter 1.5 --- Aims of study --- p.33 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials --- p.34 / Chapter 2.1.1 --- Chemical reagents --- p.34 / Chapter 2.1.2 --- Buffers --- p.37 / Chapter 2.1.2.1 --- Preparation of buffers --- p.37 / Chapter 2.1.2.2 --- Commonly used buffers --- p.37 / Chapter 2.1.3 --- Strains and plasmids --- p.40 / Chapter 2.1.4 --- Primer list --- p.40 / Chapter 2.2 --- Methods --- p.42 / Chapter 2.2.1 --- Preparation of competent cells --- p.42 / Chapter 2.2.2 --- Molecular cloning --- p.43 / Chapter 2.2.2.1 --- Amplification of the target genes by PCR --- p.43 / Chapter 2.2.2.2 --- Agarose gel electrophoresis --- p.43 / Chapter 2.2.2.3 --- Extraction and purification of DNA from agarose gels --- p.44 / Chapter 2.2.2.4 --- Restriction digestion of DNA --- p.45 / Chapter 2.2.2.5 --- Ligation of digested insert and expression vector --- p.45 / Chapter 2.2.2.6 --- Transformation and plating out transformants --- p.46 / Chapter 2.2.2.7 --- Verification of insert by PCR --- p.46 / Chapter 2.2.2.8 --- Mini-preparation of plasmid DNA --- p.47 / Chapter 2.2.2.9 --- Confirmation of insertion in the miniprep DNA by restriction digestion --- p.48 / Chapter 2.2.2.10 --- Sequencing of the plasmid DNA --- p.48 / Chapter 2.2.3 --- Cell culture --- p.53 / Chapter 2.2.3.1 --- Cultivation of human lung epithelial NCI-H292 cells --- p.53 / Chapter 2.2.3.2 --- Transfection of cell culture --- p.53 / Chapter 2.2.4 --- Western blot analysis --- p.54 / Chapter 2.2.4.1 --- Protein extraction --- p.54 / Chapter 2.2.4.2 --- Determination of protein concentration --- p.54 / Chapter 2.2.4.3 --- Protein Blotting --- p.55 / Chapter 2.2.4.4 --- Membrane blocking and antibody incubations --- p.56 / Chapter 2.2.4.5 --- Detection of proteins --- p.57 / Chapter 2.2.5 --- Total RNA extraction --- p.58 / Chapter 2.2.5.1 --- Preparation of cell culture for total RNA extraction --- p.58 / Chapter 2.2.5.2 --- Spectrophotometric analysis of total RNA --- p.58 / Chapter 2.2.5.3 --- Agarose gel electrophoresis of total RNA --- p.59 / Chapter 2.2.6 --- DNA Microarray --- p.60 / Chapter 2.2.6.1 --- Preparation of biotin-labeled antisense cRNA --- p.60 / Chapter 2.2.6.2 --- "Hybridization, washing and scanning of DNA microarray chips" --- p.60 / Chapter 2.2.6.3 --- Data processing and analysis --- p.61 / Chapter 2.2.7 --- Quantitative real-time PCR (QRT-PCR) --- p.62 / Chapter 2.2.7.1 --- Preparation of cDNA --- p.62 / Chapter 2.2.7.2 --- Analysis of mRNA gene expression by QRT-PCR --- p.62 / Chapter Chapter 3 --- Roles of NS1A and NS1B on cellular gene expression / Chapter 3.1 --- Introduction --- p.63 / Chapter 3.2 --- Results --- p.67 / Chapter 3.2.1 --- NS1 protein expression in transfected NCI-H292 cells --- p.67 / Chapter 3.2.2 --- Purity and integrity of total RNA extracted --- p.67 / Chapter 3.2.3 --- Microarray data processing and analysis --- p.70 / Chapter 3.2.3.1 --- Genes perturbed by NS1A --- p.88 / Chapter 3.2.3.1.1 --- Effect of NS1A on antiviral gene expression --- p.91 / Chapter 3.2.3.1.2 --- Regulation of JAK-STAT pathway by NS1A --- p.92 / Chapter 3.2.3.2 --- Genes perturbed by NS1B --- p.93 / Chapter 3.2.3.2.1 --- Effects of NS1B on IFN-stimulated gene expression --- p.96 / Chapter 3.2.3.3 --- Genes perturbed by both NS1A and NS1B --- p.96 / Chapter 3.2.4 --- Verification of differentially expressed genes --- p.98 / Chapter 3.3 --- Discussion --- p.100 / Chapter 3.3.1 --- Human lung epithelial cell line as a model --- p.100 / Chapter 3.3.2 --- DNA microarray technology --- p.101 / Chapter 3.3.3 --- Different actions of NS1A and NS1B on host cell gene expression --- p.102 / Chapter 3.3.4 --- Novel roles of NSIA --- p.103 / Chapter 3.3.5 --- Novel role of NSIB --- p.107 / Chapter 3.3.6 --- Implications --- p.108 / Chapter Chapter 4 --- "Roles of NSIA, NS1B and NS1C on cytokine expression" / Chapter 4.1 --- Introduction --- p.109 / Chapter 4.2 --- Results --- p.113 / Chapter 4.2.1 --- NS1 protein expression in transfected NCI-H292 cells --- p.113 / Chapter 4.2.2 --- Purity and integrity of total RNA extracted --- p.113 / Chapter 4.2.3 --- QRT-PCR --- p.116 / Chapter 4.3 --- Discussion --- p.119 / Chapter 4.3.1 --- Human lung epithelial cell line as a model for cytokine study --- p.119 / Chapter 4.3.2 --- Implications of different cytokine patterns induced by different NS1 proteins --- p.120 / Chapter Chapter 5 --- General Discussion and Future Perspectives --- p.125 / References --- p.129
|
66 |
Studium proteas virů Zika a Dengue / Analysis of Zika and Dengue virus proteasesNovotný, Pavel January 2019 (has links)
in English Zika and Dengue flaviviruses are transmitted by mosquitoes in human populations living in tropical areas. They cause fevers which in the case of Dengue can lead to life threatening haemorrhagic form. There is a possible relationship between pregnant women being infected by Zika virus and higher risk of microcephaly in new-borns. The infection is currently treated mainly symptomatically. However, there is an effort to develop compounds which block viral life cycle and viral spread through organism. Viral enzymes, such as flaviviral proteases, are regarded as suitable targets for this effort. These serine proteases with chymotrypsin fold are heterodimers which consist of flaviviral non- structural proteins NS2B and NS3. NS3 domain also contains a helicase, which can be removed by gene recombination for study purposes. NS2B is a transmembrane protein, but only a hydrophilic 40 amino acid peptide is important for the interaction with NS3 domain. This peptide has a chaperon function and participates in substrate binding to the active site. In this study, six variants of recombinant proteins containing activating peptide of NS2B and protease domain of NS3 were expressed and purified. Four variants were characterized in enzymologic studies including testing of possible inhibitors. A dipeptide...
|
67 |
Retrograde Cellular Transport of Herpes Simplex Virus: Interactions between Viral and Motor ProteinsDouglas, Mark William January 2005 (has links)
Herpes simplex virus type 1 (HSV-1) is a common human pathogen that establishes life-long latent infection in sensory neurones. This makes it potentially useful as a gene therapy vector to target neuronal cells. HSV-1 enters cells by membrane fusion, the viral envelope and most tegument proteins dissociate, and the capsid is transported to the cell nucleus to establish infection. There is increasing evidence that the retrograde transport of HSV-1 along sensory axons is mediated by cytoplasmic dynein, but the viral and cellular proteins involved are not known. Cytoplasmic dynein is the major molecular motor involved in minus-end-directed cellular transport along microtubules. It is a large complex molecule, with heavy chains providing motility, while intermediate and light chains are involved in specific cargo binding. A library of HSV-1 capsid and tegument structural genes was constructed and tested for interaction with dynein subunits in a yeast two-hybrid system. A strong interaction was demonstrated between the HSV-1 outer capsid protein VP26 (UL35), as well as the tegument protein VP11/12 (UL46), with the homologous 14 kDa dynein light chains rp3 and Tctex1. In vitro pull-down assays confirmed binding of VP26 to rp3, Tctex1 and cytoplasmic dynein complexes. Recombinant HSV-1 capsids +/- VP26 were used in similar pull-down assays. Only VP26+ capsids bound to rp3. Recombinant HSV-1 capsids were microinjected into living cells and incubated at 37�C. After 1 h capsids were observed to co-localise with rp3, Tctex1 and microtubules. After 2 or 4 h VP26+ capsids had moved closer to the cell nucleus, while VP26- capsids remained in a random distribution. Our results suggest that the HSV-1 outer capsid protein VP26 mediates binding of incoming capsids to the retrograde motor cytoplasmic dynein during cellular infection, through interactions with dynein light chains. It is hoped that these findings will help in the development of a synthetic viral vector, which may allow targeted gene therapy in patients with neurological diseases.
|
68 |
Cytokine dysregulation by human immunodeficiency virus-1 transactivating proteinYim, Chi-ho, Howard. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
69 |
Role Of Matrix Protein Of Rinderpest Virus In Viral MorphogenesisSubhashri, R 08 1900 (has links)
Rinderpest virus is an enveloped Nonsegmented Negative Stranded RNA Virus (NNSV) belonging to the genus Morbillivirus in the Family Paramyxoviridae and the causative organism for “cattle plague”. The virion has a transport component and a replication component. The transport component consists of a lipid membrane
with two external membrane-anchored glycoproteins, namely Hemagglutinin (H) and
Fusion (F) proteins that are necessary for cell entry and release of newly formed virus
particles. The replication component consists of viral genomic RNA encapsidated by the nucleoprotein (N) and a RNA polymerase complex (Large subunit L and
phosphoprotein P). These two components are linked together by the matrix protein
(M) that is believed to play a crucial role in the assembly and maturation of the virion
particle by bringing the two major viral components together at the budding site in the host cell.
To perform this function, M protein should be able to interact with the host cellular membrane, especially the plasma membrane in the case of Rinderpest virus, should be able to interact with itself to form multimers as well as with the nucleocapsid core. The function might include the interaction of M protein with the cytoplasmic tail of the other two envelope proteins namely F and H. To understand the role of matrix protein in Rinderpest virus life cycle, the following functions were characterized – 1) Matrix protein association with the host cell membrane. 2) Matrix protein association with nucleocapsid protein.
Matrix protein association cellular membranes in rinderpest virus infected
cells could be a result of its interaction with the cytoplasmic tails of the viral
glycoproteins. Hence, this association was characterized in the absence of other viral
proteins. In transiently transfected cells, M protein existed in two isoforms namely the
soluble cytosolic form and membrane-bound form. The membrane-bound M protein
associated stably with the membranes, most likely by a combination of electrostatic and hydrophobic interactions, which is inhibited at high salt or high pH, but not completely. Confocal microscopy analysis showed the presence of M protein in plasma membrane protrusions. When GFP was tagged with this protein, GFP was absent from nucleus and was present predominantly in the cytosol and the plasma membrane protrusions. However, M protein expression did not result in the release of membrane vesicles (Virus-like particles) into the culture supernatant implicating the requirement of other viral proteins in envelope acquisition.
Matrix protein of RPV has been shown to co-sediment with nucleocapsid during mild preparation of RNP from virus-infected cells. This association was further
investigated by virus solubilization. The matrix protein could be solubilised
completely from virion only in the presence of detergent and high salt. This is in
agreement with the previous observation from the laboratory that the purified matrix
protein remained soluble in the presence of detergent and 1M NaCl. This suggested
that M protein could oligomerise or associate with nucleocapsid. The purified M
protein when visualized by Electron microscopy showed the presence of globular
structures, which may be due to self association of M protein, which may be due to
self-aggregation of M protein. The presence of GFPM in filamentous structures in
transfected cells, as visualized by confocal microscopy could also be due to self-assembly of M protein.
Interaction of matrix protein RPV nucleocapsid was confirmed using co-
sedimentation and floatation gradient analysis. Results obtained from M-N binding
assay using C-terminal deletions of nucleocapsid protein suggested that the matrix protein interacted with the conserved N-terminal core of nucleocapsid and non-
conserved C-terminus 20% is dispensable. This is in agreement with the report that
RPV M protein could be replaced with that of Peste-des-petits-ruminants virus(a
closely related morbillivirus). The observation that the nucleocapsid protein interacts with both soluble and membrane-bound form suggests that the matrix protein can possibly interact itself to facilitate the assembly of replication component at the site of budding where the transport component is already assembled.
Viral proteins of many RNA viruses interact with detergent-resistant host components that facilitate their transport inside the cell to the sits of assembly or replication. Rinderpest viral proteins acquire detergent resistance in infected cells. This acquisition is mediated by viral N protein. The relevance of this interaction in
virus life cycle was studied using small molecule drugs that disrupt host cytoskeleton and lipid raft. The results obtained suggested that the host cytoskeleton, especially actin-filaments facilitate virus release from the plasma membrane. RPV matrix protein acquired detergent resistance in infected cells as well as in transfected cells. The pattern of detergent resistance suggested an association with the cytoskeleton or
cytoskeleton associated proteins. However, results obtained from co-localisation
studies in the presence of actin inhibitor and cold-ionic detergents are not consistent
with the above observation. This property could be due to self-association of matrix
protein.
|
70 |
Purification and structural analysis of Newcastle disease virus V protein and flowering locus T (FT) proteinJayapalan, Swapna, January 2007 (has links)
Thesis (M.S.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
|
Page generated in 0.0759 seconds