Spelling suggestions: "subject:"nucleoporin""
1 |
Structural and electrophysiological analysis of Hepatitis C Virus p7Oestringer, Benjamin Paul January 2013 (has links)
Infection with the hepatitis C virus (HCV) has a big impact on global health. It is estimated that approximately 3 % of the world’s population carry HCV, putting more than 200 million people at risk of developing severe liver disease, including chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The HCV encoded viroporin p7 forms ion channels that are crucial for the assembly and secretion of infectious viruses, making it a potential drug target. Its hydrophobic nature makes p7 notoriously difficult to investigate in an untagged native form. A previously determined 16 Å electron microscopy single-particle reconstruction in detergent showed a hexameric, flower-shaped p7 protein. In conjunction with one hexameric and several monomeric p7 solution state NMR structures published, this constitutes the currently available structural information framework. An E. coli expression system is introduced, which is especially adapted to express isotopically labeled p7. For the first time, suitable solution-state NMR conditions at physiological pH and temperature were identified that gave rise to high quality spectra suitable to interrogate iminosugar drug interactions with untagged isotopically labeled J4 p7 (C27S) solubilised in detergent. A novel secondary structure topology was observed and preliminary iminosugar binding sites were determined. Further, a DIB (droplet interface bilayer) system to analyse p7 ion channel function was established, which is suitable to elucidate how inhibitors act on p7 genotypes and how different lipids influence the ion channel function of p7. The p7 oligomeric state was further investigated using native gel analysis, showing that isolates representing HCV genotypes 1 - 6 form oligomeric complexes. An ion channel defective dibasic mutant implicated in severely compromising viral fitness is also shown for the first time to form an oligomer, implicating that it is not an assembly problem that leads to the abrogated function.
|
2 |
Solution NMR Structure and Binding Studies of Murine Hepatitis Coronavirus Envelope ProteinJanuary 2020 (has links)
abstract: Coronaviruses are the causative agents of SARS, MERS and the ongoing COVID-19 pandemic. Coronavirus envelope proteins have received increasing attention as drug targets, due to their multiple functional roles during the infection cycle. The murine coronavirus mouse hepatitis virus strain A59, a hepatic and neuronal tropic coronavirus, is considered a prototype of the betacoronaviruses. The envelope protein of the mouse hepatitis virus (MHV-E) was extensively screened with various membrane mimetics by solution state nuclear magnetic resonance spectroscopy to find a suitable mimetic, which allowed for assignment of ~97% of the backbone atoms in the transmembrane region. Following resonance assignments, the binding site of the ion channel inhibitor hexamethylene amiloride (HMA) was mapped to MHV-E using chemical shift perturbations in both amide and aromatic transverse relaxation optimized spectroscopy (TROSY) spectra, which indicated the inhibitor binding site is located at the N-terminal opening of the channel, in accord with one of the proposed HMA binding sites in the envelope protein from the related SARS (severe acute respiratory syndrome) betacoronavirus. Structure calculation of residues M1-K38 of MHV-E, encompassing the transmembrane region, is currently in progress using dihedral angle restraints obtained from isotropic chemical shifts and distance restraints obtained from manually assigned NOE cross-peaks, with the ultimate aim of generating a model of the MHV-E viroporin bound to the inhibitor HMA. This work outlines the first NMR studies on MHV-E, which have provided a foundation for structure based drug design and probing interactions, and the methods can be extended, with suitable modifications, to other coronavirus envelope proteins. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
|
Page generated in 0.0345 seconds