Spelling suggestions: "subject:"curine hepatitis virus"" "subject:"burine hepatitis virus""
1 |
Mechanisms of hepatic injury in murine hepatitis virus type 3 infectionMacPhee, Peggy J. January 1989 (has links)
Murine hepatitis virus type 3 (MHV-3), a member of the coronavirus family, induces a response that varies with the age and genetic background of the host mouse strain. A/J mice are fully resistant to the virus, while Balbc/J are fully susceptible and C3HebFe/J are semi-susceptible, making it possible to predictably reproduce the major human responses to hepatitis viruses. Although there has been considerable discussion of viral pathology in the literature, there has been much less emphasis on pathogenesis. In the experiments described here, histological, biophysical, and immunological techniques have been used to define the processes and cells involved.
Transmission electron microscopic observations have confirmed that Kupffer and endothelial cells of hepatic sinusoids show clear changes by 12 hrs post-infection (p.i.), which are more advanced than hepatocellular changes. No replicating virus was seen in altered hepatocytes up to 3 days p.i. Scanning electron microscopy demonstrated that areas of necrosis are focal in nature and at 2-3 days p.i. consist of small spherical areas without flow. In vivo microcirculatory studies confirm the localized nature of the lesion and have shown that red cell velocity can be recorded in individual sinusoids . Velocities were found to vary from zero within a lesion to a normal velocity of 69±31 um/sec over a distance of not more than 3 sinusoids. In-vivo microcirculatory studies also revealed the ability of macrophages to move upstream (against flow) in the hepatic sinusoids.
Using fluorescein labelled antibodies to cell surface markers (Thy-1, Lyt-2, and L3T4) it was shown that no T-cells of any subset were present in the areas of hepatocellular necrosis. Furthermore, treatment with cyclosporine A, which would be expected to decrease necrosis due to cell mediated cytotoxicity, did not significantly alter the course of the disease. The only cells which increased in number in the liver post infection were cells of the monocyte/macrophage lineage (Mac 1+), which had increased twofold at 12 hrs (p<.025) p.i. and to greater than twenty fold (p<.005) by 3 days p.i.
Resistance in the A/J strain did not reflect an inability of the immunocompetent cells to present and respond to viral antigen. It was demonstrated that MHV-3 infected macrophages from resistant A/J mice are better able to stimulate proliferation of allogeneic and syngeneic lymphocytes than those from the sensitive Balb/cJ strain. In contrast, MHV-3 infection caused a significant enhancement of chemiluminescence from Balb/cJ macrophages, which did not occur in A/J animals.
In vivo studies demonstrated a significant increase in free radical reaction products, including conjugated dienes (of long chain free fatty acids and aldehydes), thiobarbituric acid reactive substances, and lipid soluble fluorescent products between 12-72 hours p.i. with MHV-3 in the livers of susceptible Balb/cJ strain mice. All of these are products of oxidative cleavage of cellular and membrane polyunsaturated fatty acids, and result from the action of oxygen free radicals. Free radical inhibitors, or quenchers of free radical reaction products, were able to significantly reduce the liver necrosis in the susceptible mouse strain following infection.
Radioimmune assays for antibody to MHV-3 have confirmed the presence of preformed antibodies to (or cross-reactive with) MHV-3 in the sera of both susceptible and resistant mice, pre and post-infection. Immunofluorescent labelled antibodies have also been used to demonstrate the presence of IgG deposits in the sinusoids of the liver both pre and post infection. This suggests the possibility that these mice have been infected with a non-virulent MHV strain prior to these experiments. From these studies, we conclude that the hepatic injury caused by MHV-3 infction in Balb/cJ mice is mediated predominantly by fixed and migratory cells of the mononuclear phagocytic series. Susceptibility and resistance are related to strain dependant differences in the response of macrophages (and Kupffer cells) to infection, and include the release of procoagulant activity (previously shown) and reactive oxygen radicals (and possibly other macrophage activation products such as PAF) that act together to induce hepatocellular necrosis. Preformed non-neutralizing antibody and an intact complement cascade may enhance viral uptake and activation of macrophages in the Balbc/J mice. Resistance to necrosis may be enhanced by a genetic deficiency of C5 in the A/J mice, preventing the formation of the membrane attack complex and hence complement dependant cell lysis, or macrophage activation. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
|
2 |
Uso da interferencia por RNA no virus da hepatite murina tipo 3 (MHV-3) / RNA interference in MHV-3Grippo, Mariangela Carnivalli 25 April 2006 (has links)
Orientadores: Iscia Teresinha Lopes-Cendes, Rovilson Gilioli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T01:47:49Z (GMT). No. of bitstreams: 1
Grippo_MariangelaCarnivalli_D.pdf: 1241429 bytes, checksum: 5f05623ad1e884a0014d2eca9109fb9a (MD5)
Previous issue date: 2006 / Resumo: A interferência do RNA (RNAi) pode ser usada como uma ferramenta eficaz no silenciamento gênico específico mediado por moléculas de dupla fita de RNA (dsRNAs). Nesse contexto possui uma variedade de aplicações biológicas, incluindo o combate a patógenos infecciosos de importância biomédica. O objetivo do estudo foi determinar a eficiência e a especificidade da técnica de RNAi em eliminar o vírus da hepatite murina tipo 3 (MIN-3) in vitro. MHVs são vírus envelopados, cujo genoma é formado por uma cadeia de RNA fita simples (+) pertecentes a família Coronaviridae. Seu genoma codifica quatro proteínas estruturais: S (proteína da espícula); M (glicoproteína da transmembrana), N (proteína do nucleocapsídeo) e E (proteína associada à membrana) . Neste trabalho foi escolhido como alvo para o silenciamento gênico a proteína N, tendo sido produzidas moléculas de dsRNA complementares a sua seqüência genômica (GenBank AF 201929). Foram obtidas duas moléculas siRNAs transcritas por T7 RNA polimerase e uma terceira molécula interferente sintetizada comercialmente. Foi observado que os siRNAs produzidos pela transcrição in vitro, induziram uma resposta antiviral não específica. Além disso demonstrou-se que este efeito foi mediado através de substâncias secretadas no meio de cultura celular, provavelmente interferons (IFNs). Este efeito foi eficientemente eliminado após tratamento dos siRNAs com fosfatase alcalina. Observou-se também que a técnica de RNAi in vitro, tendo como alvo a proteína N de MHV-3, foi um tratamento eficaz e específico na infecção viral, confirmados através de estudos fenotípicos e moleculares. Desse modo, concluímos que experiências que utilizam RNAi contra alvos virais devem ser cuidadosamente monitoradas devido aos efeitos não específicos que podem ser induzidos por moléculas de dsRNA / Abstract: RNA Interference (RNAi) can be used as a powerful tool for post transcriptional gene-silencing mediated by double stranded RNA (dsRNAs) molecules. RNAi has a variety of biological applications including the combat against pathogens of biomedical importance. The objective of our study was to determine the efficiency and specificity of this new technique in eliminating mouse hepatitis virus type 3 (MIN-3) in vitro. MIN-3 is a subtype of enveloped viroses with a large plus-stranded RNA genome belonging to the Coronavirus family. Its genome codifies four structural proteins: S (spike protein); M (membrane protein); E (transmembrane glycoprotein); N (nucleocapsid protein). In the present study we target protein N by designing and producing dsRNA molecules complementary to its genomic sequence (GenBank AF 201929). We obtained three small interfering RNAs (siRNA) by in house T7 polymerase in vitro transcription and a fourth siRNA molecule that was commercially synthetized. We identified that siRNAs produced by in vitro transcription triggered a potent and sequence-unspecificied antiviral response. In addition, we demonstrated that this antiviral effect was mediated through molecules that were secreted in medium culture, probably interferons (IFNs). This unspecific effect was efficient1y suppressed when siRNAs were treated with aIkaline phosphatase prior to in vitro experiments. We also observed that RNAi targeting the N protein ofMIN-3 was a potent and specific treatment against in vitro infection, showing significant phenotypic protection and molecular evidence of specific gene-silencing. We concluded that experiments using RNAi against viral targets, although efficient, must be carefully controlled and monitored against possible sequence-unspecific effects triggered by dsRNA molecules / Doutorado / Genetica Animal e Evolução / Doutor em Genetica e Biologia Molecular
|
3 |
Solution NMR Structure and Binding Studies of Murine Hepatitis Coronavirus Envelope ProteinJanuary 2020 (has links)
abstract: Coronaviruses are the causative agents of SARS, MERS and the ongoing COVID-19 pandemic. Coronavirus envelope proteins have received increasing attention as drug targets, due to their multiple functional roles during the infection cycle. The murine coronavirus mouse hepatitis virus strain A59, a hepatic and neuronal tropic coronavirus, is considered a prototype of the betacoronaviruses. The envelope protein of the mouse hepatitis virus (MHV-E) was extensively screened with various membrane mimetics by solution state nuclear magnetic resonance spectroscopy to find a suitable mimetic, which allowed for assignment of ~97% of the backbone atoms in the transmembrane region. Following resonance assignments, the binding site of the ion channel inhibitor hexamethylene amiloride (HMA) was mapped to MHV-E using chemical shift perturbations in both amide and aromatic transverse relaxation optimized spectroscopy (TROSY) spectra, which indicated the inhibitor binding site is located at the N-terminal opening of the channel, in accord with one of the proposed HMA binding sites in the envelope protein from the related SARS (severe acute respiratory syndrome) betacoronavirus. Structure calculation of residues M1-K38 of MHV-E, encompassing the transmembrane region, is currently in progress using dihedral angle restraints obtained from isotropic chemical shifts and distance restraints obtained from manually assigned NOE cross-peaks, with the ultimate aim of generating a model of the MHV-E viroporin bound to the inhibitor HMA. This work outlines the first NMR studies on MHV-E, which have provided a foundation for structure based drug design and probing interactions, and the methods can be extended, with suitable modifications, to other coronavirus envelope proteins. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
|
Page generated in 0.0768 seconds