• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IDENTIFICATION OF ANCIENT ENVIRONMENTS AND THEIR RELATED GEOLOGIC PROCESSES ON MARS USING REMOTE SENSING TECHNIQUES

Amanda Rudolph (16636299) 02 August 2023 (has links)
<p>The present-day sedimentary rock record on Mars provides insights into the early surface and subsurface geologic processes. Understanding the sediment characteristics in different environments can help to constrain the climate regimes, potential for habitability, and provide a record of ancient surface processes. The research presented in this dissertation uses complementary remote sensing techniques and datasets from rovers at the surface, satellites in orbit, and at terrestrial analogs that are relevant to current Mars exploration to better characterize alteration through water-rock alteration at multiple scales.</p><p>The martian field site for this work is Mt. Sharp, a 5-kilometer-high mountain in Gale crater that is predominantly composed of fluviolacustrine strata overlain by aeolian strata. At the rover-scale, the effects of large clay-mineral rich deposits were characterized using landscape- and hand lens-scale visible images from the Mastcam and MAHLI instruments, and multispectral visible/near-infrared images from Mastcam (445-1013 nm). Detailed analysis of the observed textures and spectral properties showed that the clay-rich deposits preserve the early surface environment, based on their lack of diagenetic features. While the regions immediately surrounding the clay-rich deposit experienced prolonged exposure to water, leading to enhanced alteration zones, and destroying characteristics from the early environment but providing insight into later water-rock processes.</p><p>At the orbital-scale, three visually distinct, dark-toned, and erosion-resistant layers were mapped and characterized using visible to short wave infrared hyperspectral (700-2650 nm) and image data. Two of these units have been identified as either aeolian or lacustrine through in situ rover investigations and the third unit will not be explored in situ so its origin can only be constrained through orbital analyses. We conducted a comparison of the morphological and spectral properties of the two known units to constrain whether their respective environments can be differentiated from orbit and apply this knowledge to the unknown third unit. The composition of all three units is similar, dominated by mafic minerals, suggesting a similar sediment source. The morphology is distinct between the lacustrine and aeolian units, with the unknown unit having similar morphology as the lacustrine unit, suggesting similar environments. We propose that the lacustrine unit in this study likely represent short-timescale transitions between wet and dry environments, where mafic sands are exposed to water prior to burial and lithification. While in the aeolian unit, most water-rock interactions occur upon lithification and later diagenesis. This has climatic implications in terms of the presence of surface water as these units were deposited as part of the original Mt. Sharp strata (i.e., the lacustrine unit) while some mantling existing topography (i.e., the aeolian and unknown units), representing similar processes but at a much later time.</p><p>The terrestrial analog field site for this dissertation was conducted in Iceland which represents a cold and wet/icy climate. We characterized sediments produced through glaciovolcanism and how they are sorted and altered through transport from source to sink along to characterize unique identifiers of glaciovolcanism that can be determined with Mars-relevant techniques. Decorrelation stretched visible images and lab visible/near-infrared reflectance and thermal-infrared emission data sets (400-2500 nm and 1200-400 cm-1, respectively) show that it is possible to differentiate sediments from glaciovolcanic and subaerial volcanic systems. In some glaciovolcanic systems, a high glass abundance (50-90 %) is observed in sediment grains due to the erosion of hyaloclastite and hyalotuff, deposits that form in water- and ice-magma interactions. These glass grains did not readily breakdown physically or chemically during transport, suggesting that they could still be observed on the martian surface today and be used to identify possible glaciovolcanic deposits.</p><p>The research described in this thesis improves the understanding of different geologic environments using remote sensing techniques and their climatic implications. This will help to better constrain early environments on Mars and identify areas where water may have been present through the rock record, as observed from the surface and from orbit.</p>
2

Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling

Semella, Sebastian, Hutengs, Christopher, Seidel, Michael, Ulrich, Mathias, Schneider, Birgit, Ortner, Malte, Thiele-Bruhn, Sören, Ludwig, Bernard, Vohland, Michael 09 June 2023 (has links)
Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg−1) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg−1) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg−1 in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise.

Page generated in 0.0755 seconds