• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vital Sign Radar Redesign : Further Development of a Compact, Highly integrated 60 GHz Radar for Human Vital Sign Monitoring

Dalati, Fares, Martinez Lopez, Pablo Enrique January 2017 (has links)
Nowadays, thanks to the modern technologies, the human being has been able todevelop new techniques to solve problems present in the past. Regarding the medicalfield, it is common to use several apparatus in order to measure the vital signs. Themain drawback about the traditional methods employed for this purpose is that theyare invasive towards the patient. However, in this thesis it has been developed afurther design of a radar system so as to be able to measure these vital signs in awireless way. Based on a 60 GHz frequency modulated continuous wave radar chip, it has been ableto increase the performance of the measurements by adding a second radar chip.Because of this new feature, the radar system is now having a better precision byprocessing greater data matrix to analyse the targets positions and theirmeasurements. In addition, an enhanced MCU has been incorporated in order toavoid performance bottlenecks because it is necessary to handle the processing of thedata received by the two radar chips. Lastly, reducing the sweeping time (periodbetween the lowest frequency broadcast to linearly reach the highest frequencybroadcast) from 20 ms the previous design to 1 ms, which requires higher samplingrate to cover the fast sweep and provide higher flow of information that leads to fasterdetection process. A 3D design of the prototype has been designed to show the physical appearance itwould have once entering in production. The result is a compact and highlyintegrated radar system which will be able to monitor the heart beating andrespiration frequency of a human being in a range of ten meters.

Page generated in 0.0856 seconds