• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formulation and evaluation of different transdermal delivery systems with flurbiprofen as marker / Lindi van Zyl.

Van Zyl, Lindi January 2012 (has links)
The aim of this study was to investigate the effect of different penetration enhancers containing essential fatty acids (EFAs) on the transdermal delivery of flurbiprofen. Flurbiprofen was used as a marker / model compound. Fatty acids were chosen as penetration enhancers for their ability to reversibly increase skin permeability through entering the lipid bilayers and disrupting their ordered domains. Fatty acids are natural, non-toxic compounds (Karande & Mitragotri, 2009:2364). Evening primrose oil, vitamin F and Pheroid™ technology all contain fatty acids and were compared using a cream based-formulation. This selection was to ascertain whether EFAs exclusively, or EFAs in a delivery system, would have a significant increase in the transdermal delivery of a compound. For an active pharmaceutical ingredient (API) to be effectively delivered transdermally, it has to be soluble in lipophilic, as well as hydrophilic mediums (Naik et al., 2000:319; Swart et al., 2005:72). This is due to the intricate structure of the skin, where the stratum corneum (outermost layer) is the primary barrier, which regulates skin transport (Barry, 2001:102; Moser et al., 2001:103; Venus et al., 2010:469). Flurbiprofen is highly lipophilic (log P = 4.24) with poor aqueous solubility. It has a molecular weight lower than 500 g/mol indicating that skin permeation may be possible, though the high log P indicates that some difficulty is to be expected (Dollery, 1999:F126; Hadgraft, 2004:292; Swart et al., 2005:72; Karande & Mitragotri, 2009:2363; Drugbank, 2012). In vitro transdermal diffusion studies (utilising vertical Franz diffusion cells) were conducted, using donated abdominal skin from Caucasian females. The studies were conducted over 12 h with extractions of the receptor phase every 2 h to ensure sink conditions. Prior to skin diffusion studies, membrane release studies were performed to determine whether the API was released from the formulation. Membrane release studies were conducted over 6 h and extractions done hourly. Tape stripping experiments were performed on the skin circles after 12 h diffusion studies to determine the concentration flurbiprofen present in the stratum corneum and dermisepidermis. The flurbiprofen concentrations present in the samples were determined using high performance chromatography and a validated method. Membrane release results indicated the following rank order for flurbiprofen from the different formulations: vitamin F > control > evening primrose oil (EPO) >> Pheroid™. The control formulation contained only flurbiprofen and no penetration enhancers. Skin diffusion results on the other hand, indicated that flurbiprofen was present in the stratum corneum and the dermisepidermis. The concentration flurbiprofen present in the receptor phase of the Franz cells (representing human blood) followed the subsequent rank order: EPO > control > vitamin F >> Pheroid™. All the formulations stipulated a lag time shorter than that of the control formulation (1.74 h), with the EPO formulation depicting the shortest (1.36 h). The control formulation presented the highest flux (8.41 μg/cm2.h), with the EPO formulation following the closest (8.12 μg/cm2.h). It could thus be concluded that fatty acids exclusively, rather than in a delivery system, had a significant increase in the transdermal delivery of flurbiprofen. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
2

Formulation and evaluation of different transdermal delivery systems with flurbiprofen as marker / Lindi van Zyl.

Van Zyl, Lindi January 2012 (has links)
The aim of this study was to investigate the effect of different penetration enhancers containing essential fatty acids (EFAs) on the transdermal delivery of flurbiprofen. Flurbiprofen was used as a marker / model compound. Fatty acids were chosen as penetration enhancers for their ability to reversibly increase skin permeability through entering the lipid bilayers and disrupting their ordered domains. Fatty acids are natural, non-toxic compounds (Karande & Mitragotri, 2009:2364). Evening primrose oil, vitamin F and Pheroid™ technology all contain fatty acids and were compared using a cream based-formulation. This selection was to ascertain whether EFAs exclusively, or EFAs in a delivery system, would have a significant increase in the transdermal delivery of a compound. For an active pharmaceutical ingredient (API) to be effectively delivered transdermally, it has to be soluble in lipophilic, as well as hydrophilic mediums (Naik et al., 2000:319; Swart et al., 2005:72). This is due to the intricate structure of the skin, where the stratum corneum (outermost layer) is the primary barrier, which regulates skin transport (Barry, 2001:102; Moser et al., 2001:103; Venus et al., 2010:469). Flurbiprofen is highly lipophilic (log P = 4.24) with poor aqueous solubility. It has a molecular weight lower than 500 g/mol indicating that skin permeation may be possible, though the high log P indicates that some difficulty is to be expected (Dollery, 1999:F126; Hadgraft, 2004:292; Swart et al., 2005:72; Karande & Mitragotri, 2009:2363; Drugbank, 2012). In vitro transdermal diffusion studies (utilising vertical Franz diffusion cells) were conducted, using donated abdominal skin from Caucasian females. The studies were conducted over 12 h with extractions of the receptor phase every 2 h to ensure sink conditions. Prior to skin diffusion studies, membrane release studies were performed to determine whether the API was released from the formulation. Membrane release studies were conducted over 6 h and extractions done hourly. Tape stripping experiments were performed on the skin circles after 12 h diffusion studies to determine the concentration flurbiprofen present in the stratum corneum and dermisepidermis. The flurbiprofen concentrations present in the samples were determined using high performance chromatography and a validated method. Membrane release results indicated the following rank order for flurbiprofen from the different formulations: vitamin F > control > evening primrose oil (EPO) >> Pheroid™. The control formulation contained only flurbiprofen and no penetration enhancers. Skin diffusion results on the other hand, indicated that flurbiprofen was present in the stratum corneum and the dermisepidermis. The concentration flurbiprofen present in the receptor phase of the Franz cells (representing human blood) followed the subsequent rank order: EPO > control > vitamin F >> Pheroid™. All the formulations stipulated a lag time shorter than that of the control formulation (1.74 h), with the EPO formulation depicting the shortest (1.36 h). The control formulation presented the highest flux (8.41 μg/cm2.h), with the EPO formulation following the closest (8.12 μg/cm2.h). It could thus be concluded that fatty acids exclusively, rather than in a delivery system, had a significant increase in the transdermal delivery of flurbiprofen. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
3

Formulation, in vitro release and transdermal diffusion of Vitamin A and Zinc for the treatment of acne / Nadia Naudé

Naudé, Nadia January 2010 (has links)
Acne vulgaris is the single, most common disease that presents a significant challenge to dermatologists, due to its complexity, prevalence and range of clinical expressions. This condition can be found in 85% of teenage boys and 80% of girls (Gollnick, 2003:1580). Acne can cause serious psychological consequences (low self–esteem, social inhibition, depression, etc.), if left untreated, and should therefore be recognised as a serious disorder (Webster, 2001:15). The pathogenesis of acne is varied, with factors that include plugging of the follicle, accumulation of sebum, growth of Propionibacterium acnes (P. acnes), and inflammatory tissue responses (Wyatt et al., 2001:1809). Acne treatment focuses on the reduction of inflammatory and non–inflammatory acne lesions, and thus halts the scarring process (Railan & Alster, 2008:285). Non–inflammatory acne lesions can be expressed as open and closed comedones, whereas inflammatory lesions comprise of papules, pustules, nodules and cysts (Gollnick, 2003:1581). Acne treatment may be topical, or oral. Topical treatment is the most suitable first–line therapy for non–inflammatory comedones, or mildly inflammatory disease states, with the advantage of avoiding the possible systemic effects of oral medications (Federman & Kirsner, 2000:80). Topical retinoids were very successfully used for the treatment of acne in the 1980s. Their effectiveness in long–term therapies was limited though, due to local skin irritations that occurred in some individuals (Julie & Harper, 2004:S36). Vitamin A acetate presented a new approach in the treatment of acne, showing less side effects (Cheng & Depetris, 1998:7). In this study, vitamin A acetate and zinc acetate were formulated into semisolid, combination formulations for the possible treatment of acne. Whilst vitamin A controls the development of microcomedones, reduces existing comedones, diminishes sebum production and moderately reduces inflammation (Verschoore et al., 1993:107), zinc normalises hormone imbalances (Nutritional–supplements–health–guide.com, 2005:2) and normalises the secretion of sebum (Hostýnek & Maibach, 2002:35). Although the skin presents many advantages to the delivery of drugs, it unfortunately has some limitations. The biggest challenge in the transdermal delivery of drugs is to overcome the natural skin barrier. Its physicochemical properties are a good indication(s) of the transdermal behaviour of a drug. The ideal drug to be used in transdermal delivery would have sufficient lipophilic properties to partition into the stratum corneum, but it would also have sufficient hydrophilic properties to partition into the underlying layers of the skin (Kalia & Guy, 2001:159). Pheroid technology was also implemented during this study, in order to establish whether it would enhance penetration of the active ingredients across the skin. The Pheroid consists of vesicular structures that contain no phospholipids, nor cholesterol, but consists of the same essential fatty acids that are present in humans (Grobler et al., 2008:283). The aim of this study hence was to investigate the transdermal delivery of vitamin A acetate and zinc acetate, jointly formulated into four topical formulations for acne treatment. Vitamin A acetate (0.5%) and zinc acetate (1.2%) were formulated into a cream, Pheroid cream, emulgel and Pheroid emulgel. An existing commercial product, containing vitamin A acetate, was used to compare the results of the formulated products with. The transdermal, epidermal and dermal diffusion of the formulations were determined during a 6 h diffusion study, using Franz diffusion cells and tape stripping techniques. Experimental determination of the diffusion studies proved that vitamin A acetate did not penetrate through the skin. These results applied to both the formulations being developed during this study, as well as to the commercial product. Tape stripping studies were done to determine the concentration of drug present in the epidermis and dermis. The highest epidermal concentration of vitamin A acetate was obtained with the Pheroid emulgel (0.0045 ug/ml), whilst the emulgel formulation provided the highest vitamin A acetate concentration in the dermis (0.0029 ug/ml). Contrary, for the commercial product, the total concentration of vitamin A acetate in the epidermis was noticeably lower than for all the new formulations studied. Vitamin A acetate concentrations of the commercial product in the dermis were within the same concentration range as the newly developed formulations, with the exception of the emulgel that delivered approximately 31% more vitamin A acetate to the dermis, than the commercial product. Zinc acetate was able to diffuse through full thickness skin, although no flux values were obtained. To eliminate the possibility of endogenous zinc diffusion, placebo formulations (without zinc) were prepared for use as control samples during the skin diffusion investigation. The emulgel and Pheroid emulgel formulations were unable to deliver significant zinc acetate concentrations transdermally, although transdermal diffusion was attained from both the cream and Pheroid cream. Tape stripping experiments with placebo formulations relative to the formulated products revealed that zinc acetate concentrations in the epidermis and dermis were significantly higher when the placebo formulations were applied. However, the average zinc acetate concentration in the dermis, after application of the cream formulation, was significantly higher, compared to when the placebo cream was applied. It could therefore be concluded that no zinc acetate had diffused into the epidermis and dermis from the new formulations, except from the cream formulation. The zinc acetate concentration being measured in the epidermis thus rather represented the endogenous zinc acetate. The cream formulation, however, was probably able to deliver detectable zinc acetate concentrations to the epidermis. Stability of the formulated products was tested under a variety of environmental conditions to determine whether the functional qualities would remain within acceptable limits over a certain period of time. The formulated products were tested for a period of three months under storage conditions of 25°C/60% RH (relative humidity), 30°C/60% RH and 40°C/75% RH. Stability studies included stability indicating assay testing, the determination of rheology, pH, droplet size, zeta–potential, mass loss, morphology of the particles and physical assessment. The formulations were unstable over the three months stability test period. A change in viscosity, colour and concentration of the active ingredients were observed. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011.
4

Formulation, in vitro release and transdermal diffusion of Vitamin A and Zinc for the treatment of acne / Nadia Naudé

Naudé, Nadia January 2010 (has links)
Acne vulgaris is the single, most common disease that presents a significant challenge to dermatologists, due to its complexity, prevalence and range of clinical expressions. This condition can be found in 85% of teenage boys and 80% of girls (Gollnick, 2003:1580). Acne can cause serious psychological consequences (low self–esteem, social inhibition, depression, etc.), if left untreated, and should therefore be recognised as a serious disorder (Webster, 2001:15). The pathogenesis of acne is varied, with factors that include plugging of the follicle, accumulation of sebum, growth of Propionibacterium acnes (P. acnes), and inflammatory tissue responses (Wyatt et al., 2001:1809). Acne treatment focuses on the reduction of inflammatory and non–inflammatory acne lesions, and thus halts the scarring process (Railan & Alster, 2008:285). Non–inflammatory acne lesions can be expressed as open and closed comedones, whereas inflammatory lesions comprise of papules, pustules, nodules and cysts (Gollnick, 2003:1581). Acne treatment may be topical, or oral. Topical treatment is the most suitable first–line therapy for non–inflammatory comedones, or mildly inflammatory disease states, with the advantage of avoiding the possible systemic effects of oral medications (Federman & Kirsner, 2000:80). Topical retinoids were very successfully used for the treatment of acne in the 1980s. Their effectiveness in long–term therapies was limited though, due to local skin irritations that occurred in some individuals (Julie & Harper, 2004:S36). Vitamin A acetate presented a new approach in the treatment of acne, showing less side effects (Cheng & Depetris, 1998:7). In this study, vitamin A acetate and zinc acetate were formulated into semisolid, combination formulations for the possible treatment of acne. Whilst vitamin A controls the development of microcomedones, reduces existing comedones, diminishes sebum production and moderately reduces inflammation (Verschoore et al., 1993:107), zinc normalises hormone imbalances (Nutritional–supplements–health–guide.com, 2005:2) and normalises the secretion of sebum (Hostýnek & Maibach, 2002:35). Although the skin presents many advantages to the delivery of drugs, it unfortunately has some limitations. The biggest challenge in the transdermal delivery of drugs is to overcome the natural skin barrier. Its physicochemical properties are a good indication(s) of the transdermal behaviour of a drug. The ideal drug to be used in transdermal delivery would have sufficient lipophilic properties to partition into the stratum corneum, but it would also have sufficient hydrophilic properties to partition into the underlying layers of the skin (Kalia & Guy, 2001:159). Pheroid technology was also implemented during this study, in order to establish whether it would enhance penetration of the active ingredients across the skin. The Pheroid consists of vesicular structures that contain no phospholipids, nor cholesterol, but consists of the same essential fatty acids that are present in humans (Grobler et al., 2008:283). The aim of this study hence was to investigate the transdermal delivery of vitamin A acetate and zinc acetate, jointly formulated into four topical formulations for acne treatment. Vitamin A acetate (0.5%) and zinc acetate (1.2%) were formulated into a cream, Pheroid cream, emulgel and Pheroid emulgel. An existing commercial product, containing vitamin A acetate, was used to compare the results of the formulated products with. The transdermal, epidermal and dermal diffusion of the formulations were determined during a 6 h diffusion study, using Franz diffusion cells and tape stripping techniques. Experimental determination of the diffusion studies proved that vitamin A acetate did not penetrate through the skin. These results applied to both the formulations being developed during this study, as well as to the commercial product. Tape stripping studies were done to determine the concentration of drug present in the epidermis and dermis. The highest epidermal concentration of vitamin A acetate was obtained with the Pheroid emulgel (0.0045 ug/ml), whilst the emulgel formulation provided the highest vitamin A acetate concentration in the dermis (0.0029 ug/ml). Contrary, for the commercial product, the total concentration of vitamin A acetate in the epidermis was noticeably lower than for all the new formulations studied. Vitamin A acetate concentrations of the commercial product in the dermis were within the same concentration range as the newly developed formulations, with the exception of the emulgel that delivered approximately 31% more vitamin A acetate to the dermis, than the commercial product. Zinc acetate was able to diffuse through full thickness skin, although no flux values were obtained. To eliminate the possibility of endogenous zinc diffusion, placebo formulations (without zinc) were prepared for use as control samples during the skin diffusion investigation. The emulgel and Pheroid emulgel formulations were unable to deliver significant zinc acetate concentrations transdermally, although transdermal diffusion was attained from both the cream and Pheroid cream. Tape stripping experiments with placebo formulations relative to the formulated products revealed that zinc acetate concentrations in the epidermis and dermis were significantly higher when the placebo formulations were applied. However, the average zinc acetate concentration in the dermis, after application of the cream formulation, was significantly higher, compared to when the placebo cream was applied. It could therefore be concluded that no zinc acetate had diffused into the epidermis and dermis from the new formulations, except from the cream formulation. The zinc acetate concentration being measured in the epidermis thus rather represented the endogenous zinc acetate. The cream formulation, however, was probably able to deliver detectable zinc acetate concentrations to the epidermis. Stability of the formulated products was tested under a variety of environmental conditions to determine whether the functional qualities would remain within acceptable limits over a certain period of time. The formulated products were tested for a period of three months under storage conditions of 25°C/60% RH (relative humidity), 30°C/60% RH and 40°C/75% RH. Stability studies included stability indicating assay testing, the determination of rheology, pH, droplet size, zeta–potential, mass loss, morphology of the particles and physical assessment. The formulations were unstable over the three months stability test period. A change in viscosity, colour and concentration of the active ingredients were observed. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011.
5

Formulation, in vitro release and transdermal diffusion of selected retinoids / Arina Krüger

Krüger, Arina January 2010 (has links)
Acne is a multifactorial skin disease affecting about 80 % of people aged 11 to 30. Several systemic and topical treatments are used to treat existing lesions, prevent scarring and suppress the development of new lesions. Topical therapy is often used as first line treatment for acne, due to the location of the target organ, the pilosebaceous unit, in the skin. Retinoids are widely used as oral or topical treatment for this disease, with tretinoin and adapalene being two of the most used topical retinoids. The transdermal route offers several challenges to drug delivery, e.g. the excellent resistance of the stratum corneum to diffusion, as well as variable skin properties such as site, age, race and disease. Some additional difficulties are associated with the dermatological delivery of tretinoin and adapalene, which include suboptimal water solubility of the retinoids, isomerisation of tretinoin in the skin, mild to severe skin irritation, as well as oxidation and photo–isomerisation of tretinoin, even before crossing the stratum corneum. Researchers constantly strive to improve dermatological retinoid formulations in order to combat low dermal flux, skin irritation and instability. The release kinetics of tretinoin varies greatly according to the way in which it is incorporated into the formulation and according to the type of formulation used. Little research has been conducted regarding improved formulations for adapalene. Pheroid technology is a patented delivery system employed in this study in order to improve the dermal delivery of retinoids. Tretinoin and adapalene were separately incorporated into castor oil, vitamin F and Pheroid creams. The creams were evaluated in terms of their in vitro retinoid release, in vitro transdermal diffusion and stability. Castor oil and Pheroid creams were superior in terms of release and dermal delivery of adapalene. Tretinoin was best released and delivered to the dermis by castor oil cream. The castor oil creams were the most stable formulations, whereas the Pheroid creams were the most unstable. In terms of release, dermal diffusion and stability, castor oil cream proved to be the most suitable cream for both tretinoin and adapalene. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011.
6

Formulation, in vitro release and transdermal diffusion of selected retinoids / Arina Krüger

Krüger, Arina January 2010 (has links)
Acne is a multifactorial skin disease affecting about 80 % of people aged 11 to 30. Several systemic and topical treatments are used to treat existing lesions, prevent scarring and suppress the development of new lesions. Topical therapy is often used as first line treatment for acne, due to the location of the target organ, the pilosebaceous unit, in the skin. Retinoids are widely used as oral or topical treatment for this disease, with tretinoin and adapalene being two of the most used topical retinoids. The transdermal route offers several challenges to drug delivery, e.g. the excellent resistance of the stratum corneum to diffusion, as well as variable skin properties such as site, age, race and disease. Some additional difficulties are associated with the dermatological delivery of tretinoin and adapalene, which include suboptimal water solubility of the retinoids, isomerisation of tretinoin in the skin, mild to severe skin irritation, as well as oxidation and photo–isomerisation of tretinoin, even before crossing the stratum corneum. Researchers constantly strive to improve dermatological retinoid formulations in order to combat low dermal flux, skin irritation and instability. The release kinetics of tretinoin varies greatly according to the way in which it is incorporated into the formulation and according to the type of formulation used. Little research has been conducted regarding improved formulations for adapalene. Pheroid technology is a patented delivery system employed in this study in order to improve the dermal delivery of retinoids. Tretinoin and adapalene were separately incorporated into castor oil, vitamin F and Pheroid creams. The creams were evaluated in terms of their in vitro retinoid release, in vitro transdermal diffusion and stability. Castor oil and Pheroid creams were superior in terms of release and dermal delivery of adapalene. Tretinoin was best released and delivered to the dermis by castor oil cream. The castor oil creams were the most stable formulations, whereas the Pheroid creams were the most unstable. In terms of release, dermal diffusion and stability, castor oil cream proved to be the most suitable cream for both tretinoin and adapalene. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011.
7

Potential contribution of African leafy vegetables to the nutritional status of children / J. Osei.

Osei, Jennifer January 2012 (has links)
Background: Children in South Africa are still affected by micronutrient deficiencies and children living in farm communities are especially vulnerable. African Leafy Vegetables (ALVs) are well endowed with micronutrients such as iron, zinc and vitamin A and might contribute to the nutritional status of children. However, these vegetables have been perceived as “poor people’s food” and over the years knowledge of and use of ALVs has decreased. Aim: This study assessed the potential contribution of ALVs to the nutritional status of children in a semi-rural farm community. Method: In this cross-sectional study, anthropometric indices, serum iron, zinc and retinol concentrations were determined in school children aged 5−13 years (n=155). Dietary intake of iron, zinc and vitamin A was evaluated by three 24-hour diet recalls of children (n=154). The iron, zinc and β-carotene content of selected ALVs was determined. Knowledge of and use of ALVs by primary caregivers was established using focus group discussions (FGDs). Descriptive statistics, independent t-tests, the Pearson Chi-Square Test and Mann-Whitney U Test were used. Anthropometric data were analysed using the World Health Organization Reference 2007 data. Dietary data were analysed using FoodFinder (version 3). Qualitative data from FGDs were translated, transcribed and color-coded to generate emerging themes. Results: Stunting (11%) was the most prevalent anthropometric indicator of malnutrition. This was supported by the low socio-economic status of households. Deficiency prevalence in iron (serum ferritin <15 μg/L; 15.5%) and vitamin A (serum retinol <20 μg/dL; 3.2%) was low. Zinc deficiency was the most prevalent (serum zinc <65 μg/dL; 74.8%) deficiency. Median dietary intake of iron, zinc and vitamin A was generally above the Estimated Average Requirement. ALVs were potentially good sources of iron, zinc and β-carotene and could contribute substantially to the Recommended Dietary Allowance for these nutrients in children, without taking into account inhibiting factors that might affect the bioavailability. Iron content of the ALVs studied ranged from 1.4−3.2 mg/100 g edible portion. Amaranthus cruentus was the best source of iron. Zinc content of the ALVs ranged from 0.7−1.4 mg/100g edible portions, with Cleome gynandra having the highest zinc composition. The β-carotene content of the ALVs ranged from 182−314 μg RAE/100 g edible portion, with both Amaranthus cruentus and Cleome gynandra being the best sources. Knowledge of ALVs and their use was indigenous and was transferred between generations. Caregivers had positive attitudes towards the use of ALVs. Conclusion: Although the prevalence of deficiencies was not severe (with exception of zinc deficiency), micronutrient deficiencies exist in the rural farm community studied. ALVs are potentially good sources of iron, zinc and β-carotene and might contribute to the nutritional status of school children. Knowledge of ALVs and the positive attitude and perceptions regarding their use by primary caregivers implied a potentially positive future response to interventions promoting consumption of ALVs in order to contribute to the alleviation of micronutrient deficiencies. / Thesis (MSc (Nutrition))--North-West University, Potchefstroom Campus, 2013.
8

Potential contribution of African leafy vegetables to the nutritional status of children / J. Osei.

Osei, Jennifer January 2012 (has links)
Background: Children in South Africa are still affected by micronutrient deficiencies and children living in farm communities are especially vulnerable. African Leafy Vegetables (ALVs) are well endowed with micronutrients such as iron, zinc and vitamin A and might contribute to the nutritional status of children. However, these vegetables have been perceived as “poor people’s food” and over the years knowledge of and use of ALVs has decreased. Aim: This study assessed the potential contribution of ALVs to the nutritional status of children in a semi-rural farm community. Method: In this cross-sectional study, anthropometric indices, serum iron, zinc and retinol concentrations were determined in school children aged 5−13 years (n=155). Dietary intake of iron, zinc and vitamin A was evaluated by three 24-hour diet recalls of children (n=154). The iron, zinc and β-carotene content of selected ALVs was determined. Knowledge of and use of ALVs by primary caregivers was established using focus group discussions (FGDs). Descriptive statistics, independent t-tests, the Pearson Chi-Square Test and Mann-Whitney U Test were used. Anthropometric data were analysed using the World Health Organization Reference 2007 data. Dietary data were analysed using FoodFinder (version 3). Qualitative data from FGDs were translated, transcribed and color-coded to generate emerging themes. Results: Stunting (11%) was the most prevalent anthropometric indicator of malnutrition. This was supported by the low socio-economic status of households. Deficiency prevalence in iron (serum ferritin <15 μg/L; 15.5%) and vitamin A (serum retinol <20 μg/dL; 3.2%) was low. Zinc deficiency was the most prevalent (serum zinc <65 μg/dL; 74.8%) deficiency. Median dietary intake of iron, zinc and vitamin A was generally above the Estimated Average Requirement. ALVs were potentially good sources of iron, zinc and β-carotene and could contribute substantially to the Recommended Dietary Allowance for these nutrients in children, without taking into account inhibiting factors that might affect the bioavailability. Iron content of the ALVs studied ranged from 1.4−3.2 mg/100 g edible portion. Amaranthus cruentus was the best source of iron. Zinc content of the ALVs ranged from 0.7−1.4 mg/100g edible portions, with Cleome gynandra having the highest zinc composition. The β-carotene content of the ALVs ranged from 182−314 μg RAE/100 g edible portion, with both Amaranthus cruentus and Cleome gynandra being the best sources. Knowledge of ALVs and their use was indigenous and was transferred between generations. Caregivers had positive attitudes towards the use of ALVs. Conclusion: Although the prevalence of deficiencies was not severe (with exception of zinc deficiency), micronutrient deficiencies exist in the rural farm community studied. ALVs are potentially good sources of iron, zinc and β-carotene and might contribute to the nutritional status of school children. Knowledge of ALVs and the positive attitude and perceptions regarding their use by primary caregivers implied a potentially positive future response to interventions promoting consumption of ALVs in order to contribute to the alleviation of micronutrient deficiencies. / Thesis (MSc (Nutrition))--North-West University, Potchefstroom Campus, 2013.

Page generated in 0.0577 seconds