• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • Tagged with
  • 18
  • 14
  • 13
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem do transporte de sedimentos na Zona Costeira da Barreira do Inferno - RN, atrav?s do SMC-Brasil

Gurgel, Daniel de Freitas 25 August 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-12-01T23:39:14Z No. of bitstreams: 1 DanielDeFreitasGurgel_DISSERT.pdf: 5519178 bytes, checksum: 841ebb2e47903fddbc7df135fe8f8c51 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-12-05T23:39:54Z (GMT) No. of bitstreams: 1 DanielDeFreitasGurgel_DISSERT.pdf: 5519178 bytes, checksum: 841ebb2e47903fddbc7df135fe8f8c51 (MD5) / Made available in DSpace on 2017-12-05T23:39:54Z (GMT). No. of bitstreams: 1 DanielDeFreitasGurgel_DISSERT.pdf: 5519178 bytes, checksum: 841ebb2e47903fddbc7df135fe8f8c51 (MD5) Previous issue date: 2017-08-25 / O estado do Rio Grande Norte vem apresentando eventos de eros?o costeira ao longo de sua costa, em diversos graus de intensidade. Os trechos afetados pela eros?o costeira tem esse fen?meno atribu?do principalmente ao reduzido aporte fluvial de sedimentos, decorrentes das pequenas dimens?es das bacias fluviais regionais e da perda de sedimentos para o continente com a forma??o dos campos dunares. O conhecimento do clima de ondas, bem como a taxa de transporte de sedimentos presentes na ?rea, ? fator preponderante nos estudos de eros?o costeira. Este trabalho teve como ?rea de estudo a praia da Barreira do Inferno. Os objetivos consistiram, com o uso da ferramenta de modelagem costeira SMC-Brasil, (i) conhecer o clima de ondas ao largo da praia da Barreira do Inferno por meio da an?lise dos dados fornecidos pelos pontos de propaga??o contidos na base de dados do SMC; (ii) realizar an?lise da din?mica sedimentar da praia por meio da modelagem de transporte longitudinal de sedimentos; (iii) Identificar a sensibilidade do SMC-Brasil diante da inser??o de carta n?utica interpolada pelos m?todos Vizinho Natural e Krigagem. Dentre os resultados, destaca-se que o clima de onda do entorno da praia da Barreira do Inferno mostrou uma maior tend?ncia de ondas vindas das dire??es E e ESE. O transporte longitudinal de sedimentos anual ? da ordem de, aproximadamente, 50.000m?/ano no sentido Sul-Norte. As diferen?as apresentadas pelos m?todos Vizinho Natural e Krigagem, no c?lculo do transporte de sedimento, se mostraram negligenci?veis. Portanto, o modelo utilizado mostrou baixa sensibilidade aos m?todos interpoladores no c?lculo do transporte de sedimento. / The state of Rio Grande do Norte/Brazil has been presenting coastal erosion events along its coast, in varying degrees of intensity. The stretches affected by coastal erosion are attributed mainly to the reduced fluvial contribution of sediments, due to the small size of the regional fluvial basins and the loss of sediments to the continent with the formation of dune fields. The knowledge of the wave climate, as well as sediment transport rate of an area, is a preponderant factor in studies of coastal erosion. This work had as study area the Barreira do Inferno beach. The objectives were to use the coastal modeling tool SMC-Brasil (i) to know the wave climate off the Barreira do Inferno beach by analyzing the data provided by the propagation points contained in the SMC-Brasil 60 years database; (ii) to perform analysis of the sedimentary dynamics of the beach through the longitudinal sediment transport model; (iii) to identify the sensitivity of the SMC-Brasil to the insertion of a nautical chart interpolated by the Natural Neighbor and Kriging methods. Among the results, it should be noted that the wave climate around the Barreira do Inferno beach showed a greater tendency of waves coming from the E and ESE directions. The annual longitudinal sediment transport is approximately 50,000 m?/year in the South-North direction. The differences presented by the Natural Neighbor and Kriging methods, in the sediment transport calculation, were negligible. Therefore, the model showed low sensitivity to the interpolation methods used in the sediment transport calculation.
2

K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point

Chucre, Mirla Rafaela Rafael Braga January 2015 (has links)
CHUCRE, Mirla Rafaela Rafael Braga. K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point. 2015. 65 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Jonatas Martins (jonatasmartins@lia.ufc.br) on 2017-06-29T12:26:58Z No. of bitstreams: 1 2015_dis_mrrbchucre.pdf: 15845328 bytes, checksum: a2e4d0a03ca943372c92852d4bcf7236 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-06-29T13:54:36Z (GMT) No. of bitstreams: 1 2015_dis_mrrbchucre.pdf: 15845328 bytes, checksum: a2e4d0a03ca943372c92852d4bcf7236 (MD5) / Made available in DSpace on 2017-06-29T13:54:36Z (GMT). No. of bitstreams: 1 2015_dis_mrrbchucre.pdf: 15845328 bytes, checksum: a2e4d0a03ca943372c92852d4bcf7236 (MD5) Previous issue date: 2015 / A kNN query retrieve the k points of interest that are closest to the query point, where proximity is computed from the query point to the points of interest. Time-dependent road networks are represented as weighted graphs, where the weight of an edge depends on the time one passes through that edge. This way, we can model periodic congestions during rush hour and similar effects. Travel time on road networks heavily depends on the traffic and, typically, the time a moving object takes to traverse a segment depends on departure time. In time-dependent networks, a kNN query, called TD-kNN, returns the k points of interest with minimum travel-time from the query point. As a more concrete example, consider the following scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest from him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral of Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes 10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower. In this work, we identify a variation of nearest neighbors queries in time-dependent road networks that has wide applications and requires novel algorithms for processing. Differently from TD-kNN queries, we aim at minimizing the travel time from points of interest to the query point. With this approach, a cab company can find the nearest taxi in time to a passenger requesting transportation. More specifically, we address the following query: find the k points of interest (e.g. taxi drivers) which can move to the query point (e.g. a taxi user) in the minimum amount of time. Previous works have proposed solutions to answer kNN queries considering the time dependency of the network but not computing the proximity from the points of interest to the query point. We propose and discuss a solution to this type of query which are based on the previously proposed incremental network expansion and use the A∗ search algorithm equipped with suitable heuristic functions. We also discuss the design and correctness of our algorithm and present experimental results that show the efficiency and effectiveness of our solution. / Uma consulta de vizinhos mais próximos (ou kNN, do inglês k nearest neighbours) recupera o conjunto de k pontos de interesse que são mais próximos a um ponto de consulta, onde a proximidade é computada do ponto de consulta para cada ponto de interesse. Nas redes de rodovias tradicionais (estáticas) o custo de deslocamento de um ponto a outro é dado pela distância física entre esses dois pontos. Por outro lado, nas redes dependentes do tempo o custo de deslocamento (ou seja, o tempo de viagem) entre dois pontos varia de acordo com o instante de partida. Nessas redes, as consultas kNN são denominadas TD-kNN (do inglês Time-Dependent kNN). As redes de rodovias dependentes do tempo representam de forma mais adequada algumas situações reais, como, por exemplo, o deslocamento em grandes centros urbanos, onde o tempo para se deslocar de um ponto a outro durante os horários de pico, quando o tráfego é intenso e as ruas estão congestionadas, é muito maior do que em horários normais. Neste contexto, uma consulta típica consiste em descobrir os k restaurantes (pontos de interesse) mais próximos de um determinado cliente (ponto de consulta) caso este inicie o seu deslocamento ao meio dia. Nesta dissertação nós estudamos o problema de processar uma variação de consulta de vizinhos mais próximos em redes viárias dependentes do tempo. Diferentemente das consultas TD-kNN, onde a proximidade é calculada do ponto de consulta para um determinado ponto de interesse, estamos interessados em situações onde a proximidade deve ser calculada de um ponto de interesse para o ponto de consulta. Neste caso, uma consulta típica consiste em descobrir os k taxistas (pontos de interesse) mais próximos (ou seja, com o menor tempo de viagem) de um determinado cliente (ponto de consulta) caso eles iniciem o seu deslocamento até o referido cliente ao meio dia. Desta forma, nos cenários investigados nesta dissertação, são os pontos de interesse que se deslocam até o ponto de consulta, e não o contrário. O método proposto para executar este tipo de consulta aplica uma busca A∗ à medida que vai, de maneira incremental, explorando a rede. O objetivo do método é reduzir o percentual da rede avaliado na busca. A construção e a corretude do método são discutidas e são apresentados resultados experimentais com dados reais e sintéticos que mostram a eficiência da solução proposta.
3

Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados

Pereira, Luciano de Santana 17 July 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-11T18:44:57Z No. of bitstreams: 2 Dissertaçao Luciano Pereira.pdf: 1413296 bytes, checksum: 608b11e654f960ce7a6787138b9b1bd0 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T13:10:24Z (GMT) No. of bitstreams: 2 Dissertaçao Luciano Pereira.pdf: 1413296 bytes, checksum: 608b11e654f960ce7a6787138b9b1bd0 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T13:10:24Z (GMT). No. of bitstreams: 2 Dissertaçao Luciano Pereira.pdf: 1413296 bytes, checksum: 608b11e654f960ce7a6787138b9b1bd0 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-07-17 / T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao.
4

Classificação com exemplos de uma única classe baseada na busca pelos limites das características do problema

CABRAL, George Gomes 31 January 2014 (has links)
Submitted by Nayara Passos (nayara.passos@ufpe.br) on 2015-03-11T19:52:28Z No. of bitstreams: 2 TESE George Gomes Cabral.pdf: 3153073 bytes, checksum: 0d149ea3bf3d88d754b81befbafa8b70 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-11T19:52:28Z (GMT). No. of bitstreams: 2 TESE George Gomes Cabral.pdf: 3153073 bytes, checksum: 0d149ea3bf3d88d754b81befbafa8b70 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2014 / FACEPE / A detecção de novidades é um problema com um grande número de aplicações. Em algumas aplicações, o foco está na prevenção ou detecção de estados indesejados. Em alguns casos, esses estados não são conhecidos durante o treinamento do modelo de classificador; em outros, como monitoramento de máquinas, por exemplo, uma quebra da máquina pode ser bem rara e exemplos desse caso podem ser bastante raros. Nestes casos, a abordagem mais aceita consiste em se modelar o comportamento normal do sistema de forma a, no futuro, se detectar eventos desconhecidos. Esse é o conceito básico de Classificação com Exemplos de uma Única Classe (One-Class Classification - OCC). Esta tese introduz duas versões de um método simples e efetivo para OCC, chamado de FBDOCC (Feature Boundaries Detector for One-Class Classification). O FBDOCC funciona analisando cada característica (dimensão) do problema e criando uma representação sintética da classe novidade (desconhecida a priori) que engloba os dados da classe normal. Esse trabalho também considera o uso do algoritmo Particle Swarm Optimization (PSO) na busca da melhor configuração dos parâmetros do método proposto. Além disso, o presente trabalho introduz também um procedimento para a melhoria do custo computacional durante o treinamento, da técnica proposta, sem que haja a degradação na qualidade da classificação. Entre as motivações por trás deste trabalho, estão a criação de um método com baixo custo computacional e com a mesma ou melhor precisão na classificação que métodos para detecção de novidades do estado da arte. Vários experimentos foram executados com bases de dados do mundo real e artificiais no intuito de comparar as duas versões desenvolvidas do método proposto com alguns dos mais recentes e efetivos métodos OCC, são eles: Support Vector Data Description (SVDD), One-Class SVM (OCSVM), Least Squares One-class SVM (LSOCSVM), Kernel Principal Component Analysis (KPCA), Gaussian Process Prior OCC (GP-OCC), Condensed Nearest Neighbor Data Description (CNNDD) e One-class Random Forests (OCRF). As métricas de desempenho consideradas nos experimentos foram: (i) a area sob a curva ROC (Area Under the Curve - AUC); (ii) o coeficiente de correlação deMatthews (Matthews Correlation Coefficient - MCC); (iii) o tempo de treinamento; e (iv) a taxa de redução de protótipos. Em relação às métricas AUC e MCC, a primeira versão do método FBDOCC apresentou a melhor média global entre todos os métodos enquanto que a segunda versão do método proposto, FBDOCC2, obteve resultados comparáveis aosmelhoresmétodos em experimentos onde o FBDOCC obteve um baixo desempenho. O FBDOCC obteve os melhores resultados considerando o tempo de treinamento em todas as bases de dados, exceto uma. Em adição, o FBDOCC foi bem mais rápido que todos os métodos baseados em Máquinas de Vetores de Suporte. Além disso, um estudo de caso foi realizado utilizando dados adquiridos em um hospital local de renome. Estes dados são compostos de informações não-invasivas sobre as crianças que compareceram ao hospital com sintomas de sopro no coração. Informações como idade, peso, altura, etc., foram usadas para prever se a criança é ou cardiopata. Devido ao elevado grau de desequilíbrio entre as classes (ou seja, o número de pacientes saudáveis foi consideravelmente mais elevado), a abordagem adotada foi a de construir uma descrição dos casos saudáveis deixando casos desconhecidos fora desta descrição. Os resultados mostram que dois dos classificadores OCC aplicados (FBDOCC e OCSVM) obtiveram êxito nesta tarefa, resultando na melhor taxa, entre os métodos investigados, de detecção baseada exclusivamente em dados não-invasivo
5

Técnicas de redução de instâncias: ATISA e SSMA2

Lima Pereira, Cesar 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T15:55:36Z (GMT). No. of bitstreams: 2 arquivo2273_1.pdf: 1625266 bytes, checksum: 0eb4bb8ecfe790f72029c6e54c3438f6 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Algoritmos de aprendizagem baseados em instâncias geralmente fazem uso de grandes conjuntos de treinamento. Esses algoritmos podem necessitar de razoável espaço de armazenamento para manter esses conjuntos, ou mesmo sofrer com elevado custo computacional para a realização da aprendizagem, ou durante generalizações. Um processo de seleção de instâncias específicas para uso na aprendizagem pode influenciar fortemente o desempenho dos algoritmos baseados em instâncias. Eles podem ser melhorados em quesitos como: requisitos de armazenamento, tempo de execução e também em poder de classificação. Uma variedade de técnicas da literatura atuam com a finalidade da redução de instâncias em um conjunto de treinamento. Duas novas técnicas serão introduzidas nesta dissertação. A primeira delas, ATISA (Adaptive Threshold-based Instance Selection Algorithm), mantém instâncias com base em um critério que usa a distância de cada instância ao seu inimigo mais próximo como um limiar. Essa característica prioriza instâncias próximas às fronteiras de decisão, que são mais determinantes no processo de classificação. O ATISA é apresentado em três diferentes algoritmos, cada um com abordagens distintas. A segunda técnica proposta é uma adaptação do SSMA (Steady- State Memetic Algorithm), já utilizado para a seleção de instâncias, para a síntese de protótipos. Aqui chamado de SSMA2, ele é um algoritmo evolucionário que cria protótipos que representam instâncias e que podem não estar contidos no conjunto original de treinamento. Durante o processo de evolução, ele realiza um passo de busca local para refinar soluções, vem daí a denominação memético. Ambos, ATISA e SSMA2, apresentaram-se como alternativas dentre as técnicas de redução de instâncias existentes, de acordo com os experimentos realizados
6

Análises discriminantes não paramétricas aplicadas ao estudo da diversidade genética baseado em dados fenotípicos quantitativos

Souza, Marcileia Santos, 92-99325-6955 04 December 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T13:08:37Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Marcileia S. Souza.pdf: 1088069 bytes, checksum: 91eb662c19983ecff2646f7798e569ea (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T13:08:51Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Marcileia S. Souza.pdf: 1088069 bytes, checksum: 91eb662c19983ecff2646f7798e569ea (MD5) / Made available in DSpace on 2018-03-02T13:08:51Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Marcileia S. Souza.pdf: 1088069 bytes, checksum: 91eb662c19983ecff2646f7798e569ea (MD5) Previous issue date: 2017-12-04 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / The multivariate discriminant analysis methods aim to identify the populations in which an individual should belong, admitting previously, that the individual composes one of the evaluated populations. Methods based on linear discriminant functions have been used in predictive studies of diversity in genetic improvement, when the data are quantitative phenotype. However, this type of analysis presupposes the multinormality of populations. The objective of this study was to evaluate the effectiveness of the non-parametric discriminant methodologies of the middle neighbor and k-Nearest Neighbour in the predictive study of diversity in genetic improvement, when applied to quantitative variables, in order to satisfactorily (re) classify the genotypes in their respective populations defined a priori. Two sets of data were used: i) 83 pupunha matrices, previously allocated in three primitive races, for seven variables of the fruit; ii) 122 clones of coffee trees, previously allocated among three botanical varieties, for ten agronomic characteristics. The non-parametric methods of the middle neighbor and the k-Nearest Neighbour were evaluated under various scenarios, according to possible combinations between non-parametric analysis technique x genetic distance measure x k x probability a priori of the genotypes belonging to the populations. The genotype allocation was compared in the different scenarios and the one obtained by Anderson's discriminant functions (considered standard) from the global apparent error rates (TEA) of classification of the individuals in the respective populations. The GENES software was used. The nonparametric methods were effective to classify the genotypes in their respective populations when compared with Anderson's discriminant analysis method. There were no significant differences between Euclidean distances measurements. The Gower distance provided apparent error rates different from the other studied distances. The method of discriminant analysis of the k-Nearest Neighbour proved to be adequate for populations whose genetic divergence within is smaller. The middle neighbor method, however, classifies the genotypes better in populations where there is greater inter- or intra-population diversity. / Os métodos multivariados de análises discriminantes visam identificar as populações nas quais um indivíduo deva pertencer, admitindo previamente, que o indivíduo compõe uma das populações avaliadas. Métodos baseados em funções discriminantes lineares têm sido usados nos estudos preditivos da diversidade no melhoramento genético, quando os dados são fenotípicos quantitativos. Entretanto, este tipo de análise pressupõe a multinormalidade das populações. Objetivou-se avaliar a efetividade das metodologias de análise discriminante não paramétricas do vizinho médio e dos k-vizinhos mais próximos no estudo preditivo da diversidade no melhoramento genético, quando aplicadas à variáveis quantitativas, de modo a classificar satisfatoriamente os genótipos em suas respectivas populações definidas a priori. Dois conjuntos de dados foram utilizados: i) 83 matrizes de pupunha, previamente alocadas em três raças primitivas, para sete variáveis do fruto; ii) 122 clones de cafeeiro, previamente alocados entre três variedades botânicas, para dez variáveis agronômicas. Avaliou-se os métodos não paramétricos do vizinho médio e dos k-vizinhos mais próximos sob vários cenários, conforme combinações possíveis entre técnica de análise não paramétrica x medida de distância genética x valor de k x probabilidade a priori dos genótipos pertencerem as populações. Comparou-se a alocação dos genótipos nos diferentes cenários e com aquela obtida pelas funções discriminantes de Anderson (considerada padrão) a partir das taxas de erro aparente globais (TEA) de classificação dos indivíduos nas respectivas populações. Utilizou-se o software GENES. Os métodos não paramétricos foram efetivos para classificar os genótipos em suas respectivas populações quando comparados com o método de análise discriminante de Anderson. Não houve diferenças significativas entre as medidas de distâncias Euclidianas. A distância de Gower proporcionou taxas de erro aparente diferente das demais distâncias estudadas. O método de análise discriminante dos k vizinhos mais próximos mostrou ser adequado para populações cuja divergência genética dentro é menor. Já o método do vizinho médio classifica melhor os genótipos em populações em que haja maior diversidade inter ou intrapopulacional.
7

Extensão do Método de Predição do Vizinho mais Próximo para o modelo Poisson misto / An Extension of Nearest Neighbors Prediction Method for mixed Poisson model

Arruda, Helder Alves 28 March 2017 (has links)
Várias propostas têm surgido nos últimos anos para problemas que envolvem a predição de observações futuras em modelos mistos, contudo, para os casos em que o problema trata-se em atribuir valores para os efeitos aleatórios de novos grupos existem poucos trabalhos. Tamura, Giampaoli e Noma (2013) propuseram um método que consiste na computação das distâncias entre o novo grupo e os grupos com efeitos aleatórios conhecidos, baseadas nos valores das covariáveis, denominado Método de Predição do Vizinho Mais Próximo ou NNPM (Nearest Neighbors Prediction Method), na sigla em inglês, considerando o modelo logístico misto. O objetivo deste presente trabalho foi o de estender o método NNPM para o modelo Poisson misto, além da obtenção de intervalos de confiança para as predições, para tais fins, foram propostas novas medidas de desempenho da predição e o uso da metodologia Bootstrap para a criação dos intervalos. O método de predição foi aplicado em dois conjuntos de dados reais e também no âmbito de estudos de simulação, em ambos os casos, obtiveram-se bons desempenhos. Dessa forma, a metodologia NNPM apresentou-se como um método de predição muito satisfatório também no caso Poisson misto. / Many proposals have been created in the last years for problems in the prediction of future observations in mixed models, however, there are few studies for cases that is necessary to assign random effects values for new groups. Tamura, Giampaoli and Noma (2013) proposed a method that computes the distances between a new group and groups with known random effects based on the values of the covariates, named as Nearest Neighbors Prediction Method (NNPM), considering the mixed logistic model. The goal of this dissertation was to extend the NNPM for the mixed Poisson model, in addition to obtaining confidence intervals for predictions. To attain such purposes new prediction performance measures were proposed as well as the use of Bootstrap methodology for the creation of intervals. The prediction method was applied in two sets of real data and in the simulation studies framework. In both cases good performances were obtained. Thus, the NNPM proved to be a viable prediction method also in the mixed Poisson case.
8

Extensão do Método de Predição do Vizinho mais Próximo para o modelo Poisson misto / An Extension of Nearest Neighbors Prediction Method for mixed Poisson model

Helder Alves Arruda 28 March 2017 (has links)
Várias propostas têm surgido nos últimos anos para problemas que envolvem a predição de observações futuras em modelos mistos, contudo, para os casos em que o problema trata-se em atribuir valores para os efeitos aleatórios de novos grupos existem poucos trabalhos. Tamura, Giampaoli e Noma (2013) propuseram um método que consiste na computação das distâncias entre o novo grupo e os grupos com efeitos aleatórios conhecidos, baseadas nos valores das covariáveis, denominado Método de Predição do Vizinho Mais Próximo ou NNPM (Nearest Neighbors Prediction Method), na sigla em inglês, considerando o modelo logístico misto. O objetivo deste presente trabalho foi o de estender o método NNPM para o modelo Poisson misto, além da obtenção de intervalos de confiança para as predições, para tais fins, foram propostas novas medidas de desempenho da predição e o uso da metodologia Bootstrap para a criação dos intervalos. O método de predição foi aplicado em dois conjuntos de dados reais e também no âmbito de estudos de simulação, em ambos os casos, obtiveram-se bons desempenhos. Dessa forma, a metodologia NNPM apresentou-se como um método de predição muito satisfatório também no caso Poisson misto. / Many proposals have been created in the last years for problems in the prediction of future observations in mixed models, however, there are few studies for cases that is necessary to assign random effects values for new groups. Tamura, Giampaoli and Noma (2013) proposed a method that computes the distances between a new group and groups with known random effects based on the values of the covariates, named as Nearest Neighbors Prediction Method (NNPM), considering the mixed logistic model. The goal of this dissertation was to extend the NNPM for the mixed Poisson model, in addition to obtaining confidence intervals for predictions. To attain such purposes new prediction performance measures were proposed as well as the use of Bootstrap methodology for the creation of intervals. The prediction method was applied in two sets of real data and in the simulation studies framework. In both cases good performances were obtained. Thus, the NNPM proved to be a viable prediction method also in the mixed Poisson case.
9

Metric space indexing for nearest neighbor search in multimedia context : Indexação de espaços métricos para busca de vizinho mais próximo em contexto multimídia / Indexação de espaços métricos para busca de vizinho mais próximo em contexto multimídia

Silva, Eliezer de Souza da, 1988- 26 August 2018 (has links)
Orientador: Eduardo Alves do Valle Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T08:10:33Z (GMT). No. of bitstreams: 1 Silva_EliezerdeSouzada_M.pdf: 2350845 bytes, checksum: dd31928bd19312563101a08caea74d63 (MD5) Previous issue date: 2014 / Resumo: A crescente disponibilidade de conteúdo multimídia é um desafio para a pesquisa em Recuperação de Informação. Usuários querem não apenas ter acesso aos documentos multimídia, mas também obter semântica destes documentos, de modo que a capacidade de encontrar um conteúdo específico em grandes coleções de documentos textuais e não textuais é fundamental. Nessas grandes escalas, sistemas de informação multimídia de recuperação devem contar com a capacidade de executar a busca por semelhança de forma eficiente. No entanto, documentos multimídia são muitas vezes representados por descritores multimídia representados por vetores de alta dimensionalidade, ou por outras representações complexas em espaços métricos. Fornecer a possibilidade de uma busca por similaridade eficiente para esse tipo de dados é extremamente desafiador. Neste projeto, vamos explorar uma das famílias mais citado de soluções para a busca de similaridade, o Hashing Sensível à Localidade (LSH - Locality-sensitive Hashing em inglês), que se baseia na criação de funções de hash que atribuem, com maior probabilidade, a mesma chave para os dados que são semelhantes. O LSH está disponível apenas para um punhado funções de distância, mas, quando disponíveis, verificou-se ser extremamente eficiente para arquiteturas com custo de acesso uniforme aos dados. A maioria das funções LSH existentes são restritas a espaços vetoriais. Propomos dois métodos novos para o LSH, generalizando-o para espaços métricos quaisquer utilizando particionamento métrico (centróides aleatórios e k-medoids). Apresentamos uma comparação com os métodos LSH bem estabelecidos em espaços vetoriais e com os últimos concorrentes novos métodos para espaços métricos. Desenvolvemos uma modelagem teórica do comportamento probalístico dos algoritmos propostos e demonstramos algumas relações e limitantes para a probabilidade de colisão de hash. Dentre os algoritmos propostos para generelizar LSH para espaços métricos, esse desenvolvimento teórico é novo. Embora o problema seja muito desafiador, nossos resultados demonstram que ela pode ser atacado com sucesso. Esta dissertação apresentará os desenvolvimentos do método, a formulação teórica e a discussão experimental dos métodos propostos / Abstract: The increasing availability of multimedia content poses a challenge for information retrieval researchers. Users want not only have access to multimedia documents, but also make sense of them --- the ability of finding specific content in extremely large collections of textual and non-textual documents is paramount. At such large scales, Multimedia Information Retrieval systems must rely on the ability to perform search by similarity efficiently. However, Multimedia Documents are often represented by high-dimensional feature vectors, or by other complex representations in metric spaces. Providing efficient similarity search for that kind of data is extremely challenging. In this project, we explore one of the most cited family of solutions for similarity search, the Locality-Sensitive Hashing (LSH), which is based upon the creation of hashing functions which assign, with higher probability, the same key for data that are similar. LSH is available only for a handful distance functions, but, where available, it has been found to be extremely efficient for architectures with uniform access cost to the data. Most existing LSH functions are restricted to vector spaces. We propose two novel LSH methods (VoronoiLSH and VoronoiPlex LSH) for generic metric spaces based on metric hyperplane partitioning (random centroids and K-medoids). We present a comparison with well-established LSH methods in vector spaces and with recent competing new methods for metric spaces. We develop a theoretical probabilistic modeling of the behavior of the proposed algorithms and show some relations and bounds for the probability of hash collision. Among the algorithms proposed for generalizing LSH for metric spaces, this theoretical development is new. Although the problem is very challenging, our results demonstrate that it can be successfully tackled. This dissertation will present the developments of the method, theoretical and experimental discussion and reasoning of the methods performance / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
10

Exploração de dados multivariados de fontes e extratos de antocianinas ultilizando análise de componentes princiaipais e método do vizinho mais proximo / Exploring multivariate data of sources and extracts of anthocyanins using principal components analysis and method of nearest neighbor

Favaro, Martha Maria Andreotti, 1981- 20 August 2018 (has links)
Orientador: Adriana Vitorino Rossi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-20T02:46:28Z (GMT). No. of bitstreams: 1 Favaro_MarthaMariaAndreotti_D.pdf: 3734314 bytes, checksum: 08002efe51b2f18e9a942c3b818270b7 (MD5) Previous issue date: 2012 / Resumo: Antocianinas (ACYS) são corantes naturais responsáveis pela coloração de frutas, hortaliças, flores e grãos. Novas perspectivas de usos de antocianinas em diversos segmentos industriais estimulam estudos analíticos para sistematizar a identificação e a classificação de fontes e extratos desses corantes. Neste trabalho foram utilizadas fontes de ACYS como frutas típicas brasileiras: AMORA (Morus nigra), amora preta (Rubus sp.), jabuticaba (Myrciaria cauliflora), jambolão (Syzygium cumini), jussara (Euterpe edulis Mart.), morango (Fragaria x ananassa Duch) e uva (Vitis vinífera e Vitis vinífera L. Brasil); hortaliças: alface roxa (Lactuca sativa), berinjela (Solanum melongena), cebola roxa (Allium cepa), rabanete (Raphanus sativus), repolho roxo (Brassica oleraceae) e flores: beijo-turco (Impatiens walleriana), gerânio (Pelargonium hortorum e Pelargonium peltatum L.), hibisco (Hibiscus sinensis e Hibiscus syriacus) e hortênsia (Hydrangea macrophylla). A literatura descreve diversas técnicas para análise de ACYS em vegetais e seus extratos, com destaque para cromatografia líquida de alta eficiência (HPLC), espectrometria de massas (MS) e espectrofotometria (UV-Vis), sendo que todas elas foram aplicadas neste trabalho, incluindo-se espectrofotometria de reflectância e a técnica de eletromigração em capilares cromatografia eletrocinética micelar (MEKC). As ferramentas quimiométricas utilizadas no tratamento dos dados foram análise de componentes principais (PCA) e método do vizinho mais próximo (KNN). Os modelos quimiométricos de classificação obtidos apresentaram-se robustos com erros de previsão de menos de 30 % sendo possível identificar as fontes de ACYS, o solvente extrator, a idade dos extratos e dados sobre sua estabilidade e condições de armazenamento. Os resultados apontaram que dados obtidos de técnicas analíticas simples como espectrofotometria de absorção e sem necessidade de preparo de amostra como reflectância difusa na região do visível são comparáveis a resultados de técnicas mais sofisticadas e caras como HPLC e MEKC e até superam o potencial de algumas informações obtidas por MS / Abstract: Anthocyanins (ACYS) are natural dyes responsible for color in fruits, vegetables, flowers and grains. New perspectives for use of anthocyanins in various industries stimulate analytical studies to systematize the identification and classification of sources and extracts of these dyes. In this work, typical Brazilian fruits: mulberry (Morus nigra), blackberry (Rubus sp), jaboticaba (Myrciaria cauliflora), jambolan (Syzygium cumini), jussara fruit (Euterpe edulis Mart.), strawberry (Fragaria x ananassa Duch) and grapes (Vitis vinifera and Vitis vinifera L. 'Brazil'); vegetables: red lettuce (Lactuca sativa), eggplant (Solanum melongena), purple onion (Allium cepa), radish (Raphanus sativus), red cabbage (Brassica oleracea) and flowers, Buzy Lizzie (Impatiens walleriana), geranium (Pelargonium hortorum and Pelargonium peltatum L.), hibiscus (Hibiscus sinensis and Hibiscus syriacus) and hydrangea (Hydrangea macrophylla) were used as sources of ACYS. The literature describes several techniques for analyzing ACYS in vegetables and their extracts, with emphasis on high performance liquid chromatography (HPLC), mass spectrometry (MS) and spectrophotometry (UV-VIS). All of these techniques were applied in this work, including reflectance spectrophotometry and micellar electrokinetic chromatography (MEKC) which is one of the capillary electromigration techniques. The chemometric tools used in data handling were the principal component analysis (PCA) and the K-nearest neighbor method (KNN). The chemometric classification models obtained are robust with predict errors of less than 30 %. It is possible to identify the sources of ACYS, the extractor solvent, the age of the extracts, their stability and storage conditions. The results show that data obtained from simple analytical techniques such as absorption spectroscopy and diffuse reflectance in the visible region (sample preparation is not needed) are comparable to results of those obtained from sophisticated and expensive techniques such as HPLC and MEKC. These techniques also surpass the information obtained by MS / Doutorado / Quimica Analitica / Doutor em Ciências

Page generated in 0.0517 seconds