• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Separation of tantalum and niobium by solvent extraction / M.J. Ungerer.

Ungerer, Maria Johanna January 2012 (has links)
Niobium (Nb) and tantalum (Ta) are found in the same group (VB) of the periodic table of elements and therefore have similar chemical properties, which is the reason why they are difficult to separate. They are usually found together in various minerals of which the most important are columbite ((Fe, Mn, Mg)(Nb, Ta)2O6) and tantalite ((Fe, Mn)(Nb, Ta)2O6). Several methods have been used to separate Nb and Ta. Most methods use very high concentrations of hydrofluoric acid (HF) and sulphuric acid (H2SO4) as the aqueous phase, tributyl phosphate (TBP) as the extractant and methyl isobutyl ketone (MIBK) as the organic phase. High extraction can be achieved, but the reagents used are hazardous. With the increasing demand of both pure Ta and Nb, as well as stricter environmental requirements, a need exists to develop a more efficient and safer technique to separate Ta and Nb. In this project the focus was on the solvent extraction (SX) of Ta and Nb with the possible application in a membrane-based solvent extraction (MBSX) process. For this purpose, eight different extractants were investigated, namely the cation exchangers di-iso-octyl-phosphinic acid (PA) and di-(2-ethylhexyl)-phosphoric acid (D2EHPA), the neutral solvating extractant 2-thenoyl-trifluoro- acetone (TTA), and the anion exchangers Alamine 336, Aliquat 336, 1-octanol, 2-octanol and 3-octanol. The extractant to metal ratio was varied from 0.1:1 to 10:1, while cyclohexane was used as diluent and 3% v/v 1-octanol was used as modifier for the organic phase. In addition, four different acids, hydrochloric acid (HCl), nitric acid (HNO3), sulphuric (H2SO4) and perchloric acid (HClO4), were used at different concentrations to determine the best combination for extraction. First, fluoride salts of Ta and Nb (Ta(Nb)F5) were tested and the optimum results showed that the highest extraction was obtained with PA and D2EHPA, irrespective of the type of acid used. Similarly, irrespective of the acid used, extraction with PA and D2EHPA increased with increasing acid concentration, followed by Alamine 336, Aliquat 336 and then TTA and the octanols. Extraction values of 97% Ta at 15 mol/dm3 and 85% Nb between 12 and 15 mol/dm3 were obtained. Although extraction of both Ta and Nb was achieved with all the acids tested, only H2SO4 showed sufficient separation (log D = 3) of the two metals in the 0 to 2 mol/dm3 acid range and 15 mol/dm3 for PA and D2EHPA, respectively. Precipitation, probably due to hydrolysis of the metals, occurred in the absence of acid when using Alamine 336, Aliquat 336 and TTA. The octanols showed the least amount of extraction of Ta and Nb, irrespective of the acid investigated. The optimum extraction was achieved with an E/M ratio of 3:1 of PA and D2EHPA as the extractant and 10 mol/dm3 H2SO4 in the aqueous phase. The NH4Ta(Nb)F6 salt solution was investigated using the optimum conditions for maximum extraction obtained from the Ta(Nb)F5 experiments, i.e. 4 mol/dm3 H2SO4 with an E/M ratio above 3:1 for the extractant PA and 4 mol/dm3 H2SO4 with an E/M ratio of 20:1 for the extractant D2EHPA. Kinetic equilibrium for PA was reached after 10 minutes and for D2EHPA after 20 minutes. The highest extraction of Ta (100%) above 3 mol/dm3 H2SO4 and Nb (54%) at 8 mol/dm3 with the highest separation factor of 4.7 with PA was achieved, followed by the 100% extraction of Ta above 5 mol/dm3 and 40% Nb at 10 mol/dm3 with the highest separation factor of 4.9 in D2EHPA. Although the aim of this study was the extraction and separation of Ta and Nb, the recovery or back extraction of the metals from the organic phase, as well as the membrane-based solvent extraction (MBSX) was briefly investigated. From the preliminary results obtained it became apparent that further research into the different aspects, including the type of stripping agent used, stripping agent concentration, effect of Ta to Nb ratio and different sources of Ta and Nb is needed to obtain the optimum conditions for the MBSX process and the subsequent recovery of Ta and Nb. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2013.
2

Separation of tantalum and niobium by solvent extraction / M.J. Ungerer.

Ungerer, Maria Johanna January 2012 (has links)
Niobium (Nb) and tantalum (Ta) are found in the same group (VB) of the periodic table of elements and therefore have similar chemical properties, which is the reason why they are difficult to separate. They are usually found together in various minerals of which the most important are columbite ((Fe, Mn, Mg)(Nb, Ta)2O6) and tantalite ((Fe, Mn)(Nb, Ta)2O6). Several methods have been used to separate Nb and Ta. Most methods use very high concentrations of hydrofluoric acid (HF) and sulphuric acid (H2SO4) as the aqueous phase, tributyl phosphate (TBP) as the extractant and methyl isobutyl ketone (MIBK) as the organic phase. High extraction can be achieved, but the reagents used are hazardous. With the increasing demand of both pure Ta and Nb, as well as stricter environmental requirements, a need exists to develop a more efficient and safer technique to separate Ta and Nb. In this project the focus was on the solvent extraction (SX) of Ta and Nb with the possible application in a membrane-based solvent extraction (MBSX) process. For this purpose, eight different extractants were investigated, namely the cation exchangers di-iso-octyl-phosphinic acid (PA) and di-(2-ethylhexyl)-phosphoric acid (D2EHPA), the neutral solvating extractant 2-thenoyl-trifluoro- acetone (TTA), and the anion exchangers Alamine 336, Aliquat 336, 1-octanol, 2-octanol and 3-octanol. The extractant to metal ratio was varied from 0.1:1 to 10:1, while cyclohexane was used as diluent and 3% v/v 1-octanol was used as modifier for the organic phase. In addition, four different acids, hydrochloric acid (HCl), nitric acid (HNO3), sulphuric (H2SO4) and perchloric acid (HClO4), were used at different concentrations to determine the best combination for extraction. First, fluoride salts of Ta and Nb (Ta(Nb)F5) were tested and the optimum results showed that the highest extraction was obtained with PA and D2EHPA, irrespective of the type of acid used. Similarly, irrespective of the acid used, extraction with PA and D2EHPA increased with increasing acid concentration, followed by Alamine 336, Aliquat 336 and then TTA and the octanols. Extraction values of 97% Ta at 15 mol/dm3 and 85% Nb between 12 and 15 mol/dm3 were obtained. Although extraction of both Ta and Nb was achieved with all the acids tested, only H2SO4 showed sufficient separation (log D = 3) of the two metals in the 0 to 2 mol/dm3 acid range and 15 mol/dm3 for PA and D2EHPA, respectively. Precipitation, probably due to hydrolysis of the metals, occurred in the absence of acid when using Alamine 336, Aliquat 336 and TTA. The octanols showed the least amount of extraction of Ta and Nb, irrespective of the acid investigated. The optimum extraction was achieved with an E/M ratio of 3:1 of PA and D2EHPA as the extractant and 10 mol/dm3 H2SO4 in the aqueous phase. The NH4Ta(Nb)F6 salt solution was investigated using the optimum conditions for maximum extraction obtained from the Ta(Nb)F5 experiments, i.e. 4 mol/dm3 H2SO4 with an E/M ratio above 3:1 for the extractant PA and 4 mol/dm3 H2SO4 with an E/M ratio of 20:1 for the extractant D2EHPA. Kinetic equilibrium for PA was reached after 10 minutes and for D2EHPA after 20 minutes. The highest extraction of Ta (100%) above 3 mol/dm3 H2SO4 and Nb (54%) at 8 mol/dm3 with the highest separation factor of 4.7 with PA was achieved, followed by the 100% extraction of Ta above 5 mol/dm3 and 40% Nb at 10 mol/dm3 with the highest separation factor of 4.9 in D2EHPA. Although the aim of this study was the extraction and separation of Ta and Nb, the recovery or back extraction of the metals from the organic phase, as well as the membrane-based solvent extraction (MBSX) was briefly investigated. From the preliminary results obtained it became apparent that further research into the different aspects, including the type of stripping agent used, stripping agent concentration, effect of Ta to Nb ratio and different sources of Ta and Nb is needed to obtain the optimum conditions for the MBSX process and the subsequent recovery of Ta and Nb. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2013.
3

On protease inhibitors and leukocyte proteases in rheumatoid synovial fluid

Ekerot, Lars. January 1982 (has links)
Thesis (doctoral)--Malmö, 1982.
4

The use of crosslinked polyethylene for the manufacturing of membranes / Albertus Maritz van Wyk

Van Wyk, Albertus Maritz January 1999 (has links)
Increasing environmental awareness over the past decade as well as stringent environmental laws forced all factories to invest in water treatment processes for effluent treatment before discharge or re-use. Most of these effluent treatment processes utilize membranes as the physical. barrier for separation. The membranes used in water applications are expensive and alternative materials and production techniques will increase the viability of membrane separation processes. Experiments conducted on irradiated polyethylene showed that some of its properties were enhanced while others deteriorated. However, the enhanced properties make the polyethylene, in particular ultra-high molecular weight polyethylene, an ideal membrane material. The manufactured membranes were tested in extraction experiments, and satisfactory results were obtained. Permeation studies on the membranes compared favourably with similar studies done on commercially available membranes. An extraction rate of 1.08 g/(m2h) nickel was achieved. A preliminary cost evaluation showed that these membranes can be manufactured at a low cost (R13.45/m2). and can be applied as supported liquid membranes. Future research should focus on methods to decrease the brittleness and stiffness of the membranes. / Thesis (MIng)--PU for CHE, 1999
5

The use of crosslinked polyethylene for the manufacturing of membranes / Albertus Maritz van Wyk

Van Wyk, Albertus Maritz January 1999 (has links)
Increasing environmental awareness over the past decade as well as stringent environmental laws forced all factories to invest in water treatment processes for effluent treatment before discharge or re-use. Most of these effluent treatment processes utilize membranes as the physical. barrier for separation. The membranes used in water applications are expensive and alternative materials and production techniques will increase the viability of membrane separation processes. Experiments conducted on irradiated polyethylene showed that some of its properties were enhanced while others deteriorated. However, the enhanced properties make the polyethylene, in particular ultra-high molecular weight polyethylene, an ideal membrane material. The manufactured membranes were tested in extraction experiments, and satisfactory results were obtained. Permeation studies on the membranes compared favourably with similar studies done on commercially available membranes. An extraction rate of 1.08 g/(m2h) nickel was achieved. A preliminary cost evaluation showed that these membranes can be manufactured at a low cost (R13.45/m2). and can be applied as supported liquid membranes. Future research should focus on methods to decrease the brittleness and stiffness of the membranes. / Thesis (MIng)--PU for CHE, 1999
6

Evaluation of the reduction of CO2 emissions from a coal-to-liquids utilities plant by incorporating PBMR energy / M.M. Gouws

Gouws, Marizanne Michele January 2012 (has links)
Due to the constantly growing environmental concerns about global warming, there is immense pressure on the coal-to-liquids (CTL) industry to lower carbon dioxide emissions. This study evaluates the cogeneration of electricity and process steam, using coal and nuclear heat obtained from a High Temperature Gas Cooled Reactor (HTGR) such as a Pebble Bed Modular Reactor (PBMR), for the use in a CTL plant. Three different cogeneration processes were investigated to resolve what influence nuclear cogenerated electricity and process steam would have on the carbon dioxide emissions and the unit production cost of electricity and process steam. The first process investigated utilises coal as combustion medium and an extraction/condensing steam turbine, together with the thermodynamic Rankine cycle, for the cogeneration of electricity and process steam. This process was used as a basis of comparison for the nuclearbased cogeneration processes. The second process investigated utilises nuclear heat generated by a HTGR and the same power conversion system as the coal-based cogeneration system. Utilising a HTGR as a heat source can decrease the carbon dioxide emissions to approximately zero, with a 91.6% increase in electricity production cost. The last process investigated is the nuclear-based closed cycle gas turbine system where a gas turbine and Brayton cycle is coupled with a HTGR for the cogeneration of electricity and process steam. It was found on technical grounds that this process would not be viable for the cogeneration of electricity and process steam. The unit production cost of electricity and process steam generated by each process were determined through an economic analysis performed on each process. Overall it was found that the CTL industry could benefit a great deal from utilising nuclear heat as a heat source. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
7

Evaluation of the reduction of CO2 emissions from a coal-to-liquids utilities plant by incorporating PBMR energy / M.M. Gouws

Gouws, Marizanne Michele January 2012 (has links)
Due to the constantly growing environmental concerns about global warming, there is immense pressure on the coal-to-liquids (CTL) industry to lower carbon dioxide emissions. This study evaluates the cogeneration of electricity and process steam, using coal and nuclear heat obtained from a High Temperature Gas Cooled Reactor (HTGR) such as a Pebble Bed Modular Reactor (PBMR), for the use in a CTL plant. Three different cogeneration processes were investigated to resolve what influence nuclear cogenerated electricity and process steam would have on the carbon dioxide emissions and the unit production cost of electricity and process steam. The first process investigated utilises coal as combustion medium and an extraction/condensing steam turbine, together with the thermodynamic Rankine cycle, for the cogeneration of electricity and process steam. This process was used as a basis of comparison for the nuclearbased cogeneration processes. The second process investigated utilises nuclear heat generated by a HTGR and the same power conversion system as the coal-based cogeneration system. Utilising a HTGR as a heat source can decrease the carbon dioxide emissions to approximately zero, with a 91.6% increase in electricity production cost. The last process investigated is the nuclear-based closed cycle gas turbine system where a gas turbine and Brayton cycle is coupled with a HTGR for the cogeneration of electricity and process steam. It was found on technical grounds that this process would not be viable for the cogeneration of electricity and process steam. The unit production cost of electricity and process steam generated by each process were determined through an economic analysis performed on each process. Overall it was found that the CTL industry could benefit a great deal from utilising nuclear heat as a heat source. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.

Page generated in 0.0443 seconds