• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 13
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 44
  • 29
  • 29
  • 13
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics and Transfers in two phase flows with phase change in normal and microgravity conditions

Trejo Peimbert, Esli 22 November 2018 (has links) (PDF)
Two-phase flows with or without phase change are present in terrestrial and space applications like thermal control of satellites, propellant supply for launchers, and waste water treatment for space exploration missions. Flow boiling experiment with HFE7000 were conducted in a heated tube in vertical upward flow on ground and in microgravity conditions to collect data on flow patterns, pressure drops, heat transfers, void fraction. Void fraction measurements allowed to measure mean gas velocity and the liquid film thickness in annular flow. In microgravity condition, the liquid film thickness and the interfacial shear stress are significantly lower than in normal gravity. A detail analysis of the film structure was performed by image processing. The impact of gravity and liquid and vapour superficial velocities on the disturbance waves velocities and frequencies was investigated. Two different measurement techniques were used and compared to determine the heat transfer coefficient. For quality values greater than 0.2, HTC is not sensitive to gravity and is in good agreement with classical correlations of the literature. For qualities smaller than 0.1, in the subcooled nucleate boiling regime HTC is significantly smaller in microgravityconditions.
2

Microgravity flow pattern identification using void fraction signals

Valota, Luca 29 August 2005 (has links)
Knowledge of the two-phase flow state is fundamental for two-phase flow system design and operation. In traditional two-phase flow studies, the flow regime refers to the physical location of the gas and liquid in a conduit. Flow configuration is important for engineering correlations of heat and mass transfer, pressure drop, and wall shear. However, it is somewhat subjective since it is mostly defined by experimental observation, resulting in an approximate and equivocal definition. Thus, there is need for a better, objective flow regime identification. The void fraction is a key parameter in monitoring the operating state of a two-phase system and several tools have been developed in order to measure it. The purpose of this study is to use the void fraction and other parameters of the system to achieve a model for flow pattern identification. Recently, an experimental program using the Foster-Miller two-phase flow test bed and Creare Inc. capacitance void fraction sensors was conducted in the microgravity environment of the NASA KC-135 aircraft. Several data types were taken for each phase, such as flow rate, superficial velocity, density and transient void fraction at 100Hz. Several analytical approaches were pursued, including a statistical approach of the fluctuation of the void fraction, Martinelli analysis, and Drift Flux analysis, in order to reach a model for flow pattern identification in microgravity conditions. Several parameters were found to be good flow pattern identifiers such as the statistical moments variance and skewness, Signal -to- noise ratio (SNR), Half Height Value (HHV) and Linear Area Difference (LAD). Moreover, relevant conclusions were achieved using the Martinelli parameter and the Drift Flux model in microgravity conditions. These results were compared with the basic literature.
3

Monitoring Gas Void Fraction In Two-Phase Flow With Acoustic Emission

Addali, Abdulmajid 04 1900 (has links)
The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters suffer from several limitations in some flow conditions such as Slug flow regime. This research presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase air / water flow. A unique experimental facility was modified to accommodate an investigation into the applicability of the Acoustic Emission (AE) technology in monitoring two-phase gas\liquid flow. The testing facility allowed for investigations over a range of superficial liquid velocities (0.3 to 2.0 ms-1) and superficial gas velocities (0.2 to 1.4 ms-1). The influence of several variables such as temperature, viscosity and surface roughness were also investigated. Measurements of AE for varying gas void fractions were compared to conductive probe measurements and results showed a direct correlation between the AE energy and the gas void fraction. It is concluded that the GVF can be determined by measurement of Acoustic Emission and this forms the major contribution of this thesis.
4

Microgravity flow pattern identification using void fraction signals

Valota, Luca 29 August 2005 (has links)
Knowledge of the two-phase flow state is fundamental for two-phase flow system design and operation. In traditional two-phase flow studies, the flow regime refers to the physical location of the gas and liquid in a conduit. Flow configuration is important for engineering correlations of heat and mass transfer, pressure drop, and wall shear. However, it is somewhat subjective since it is mostly defined by experimental observation, resulting in an approximate and equivocal definition. Thus, there is need for a better, objective flow regime identification. The void fraction is a key parameter in monitoring the operating state of a two-phase system and several tools have been developed in order to measure it. The purpose of this study is to use the void fraction and other parameters of the system to achieve a model for flow pattern identification. Recently, an experimental program using the Foster-Miller two-phase flow test bed and Creare Inc. capacitance void fraction sensors was conducted in the microgravity environment of the NASA KC-135 aircraft. Several data types were taken for each phase, such as flow rate, superficial velocity, density and transient void fraction at 100Hz. Several analytical approaches were pursued, including a statistical approach of the fluctuation of the void fraction, Martinelli analysis, and Drift Flux analysis, in order to reach a model for flow pattern identification in microgravity conditions. Several parameters were found to be good flow pattern identifiers such as the statistical moments variance and skewness, Signal -to- noise ratio (SNR), Half Height Value (HHV) and Linear Area Difference (LAD). Moreover, relevant conclusions were achieved using the Martinelli parameter and the Drift Flux model in microgravity conditions. These results were compared with the basic literature.
5

Cold Model Study Of Formation And Breaking Of Raceway

Sastry, Ghatty S S R K 08 1900 (has links)
The raceway in the ironmaking blast furnace is a void in front of the hot blast tuyeres where coke and supplementary fuel burn to supply heat to the ironmaking process. The air velocity through the tuyeres is high (around 200 m/s) and this causes the coke particles to circulate in a rotating flow field inside the raceway. The size and shape of the raceway determine the gas flow dstribution, the reactions that occur, and the temperature profiles in the lower part of the blast furnace. It is for these reasons that the raceway has been extensively researched in the past. . Literature review revealed that forming and breaking of the raceway has not been yet studied. So, in the present study, we have concentrated our effort to study the formation and breaking of the raceway for different blast and bed parameters. The experiments have been performed in two-dimensional glass models. An attempt has been made to develop a correlation for each case. The formation of the void has been studied with change in parameters like density and size of the particles, bed height. The theory of the void formation has been derived from the fundamental principles. The formation of raceway, has been studied with the change in blast parameters like particle density and diameter, bed height and model width. It was found that when raceway is formed there is a sudden increment in pressure drop. The condition for breaking of the raceway, has been studied with change in blast and bed parameters like particle size and density, bed height and model width. It was observed that during the breaking of raceway, pressure decreases continuously. New semi-empirical correlations have been developed using dimensional analysis for formation of void, formation of raceway, and breaking of the raceway. The raceway growth also characterized with change in model width, flow rate, particle diameter, density of the particles and bed height. A few experimental results have been compared with published data. New semi-empirical correlation have been developed using dimensional analysis for the growth of raceway. Velocity of the gas exiting from top of the bed has been measured with the help of hot wire anemometer. It was observed that the velocity leaving from the bed is more on top of the raceway compared to the velocity leaving from the other parts of the bed. High velocity was observed near the wall of the model. Coefficient of wall-friction and angle of internal friction in presence and absence of gas were studied to explain the effect of bed height on formation of the void and raceway. It was observed that in presence of gas, coefficient of friction between the particles and wall and angle of internal friction between particles decreased, compared to the values in absence of gas. To study the effect of mixed particles, on the formation and breaking of the raceway, different sized particles in fixed proportion were taken. It was found that the experiments were more reproducible in case of uniform sized particles compared to mixed particles. It was also observed that for the same average particle diameter, mixture particles requires more velocity to form the void and raceway. New semi-empirical correlations have been developed using dimensional analysis for the formation of void, formation of raceway, growth of the raceway, and breaking of the raceway. Finally, an attempt has been made to quantify the various forces (pressure, bed weight & frictional forces) present in the raceway. Results show that further investigation is required in quantifying these forces properly.
6

Measurements in Horizontal Air-water Pipe Flows Using Wire-mesh Sensors

Lessard, Etienne 10 April 2014 (has links)
This thesis is concerned with the performance and measurement uncertainty of wire-mesh sensors in different air-water flow regimes in horizontal pipes. It also presents measurements of void fraction and interfacial velocity in such flows. It was found that the interfacial velocity measurements of the wire-mesh sensors were in good agreement with those taken with a high-speed camera and estimates of the uncertainties of these measurements are presented. Drift-flux models were fitted to the measurements and it was found that the parameters of these models were not only sensitive to the flow regime, but also to the liquid superficial velocity.
7

Monitoring gas void fraction in two-phase flow with acoustic emission

Addali, Abdulmajid January 2010 (has links)
The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters suffer from several limitations in some flow conditions such as Slug flow regime. This research presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase air / water flow. A unique experimental facility was modified to accommodate an investigation into the applicability of the Acoustic Emission (AE) technology in monitoring two-phase gas\liquid flow. The testing facility allowed for investigations over a range of superficial liquid velocities (0.3 to 2.0 ms-1) and superficial gas velocities (0.2 to 1.4 ms-1). The influence of several variables such as temperature, viscosity and surface roughness were also investigated. Measurements of AE for varying gas void fractions were compared to conductive probe measurements and results showed a direct correlation between the AE energy and the gas void fraction. It is concluded that the GVF can be determined by measurement of Acoustic Emission and this forms the major contribution of this thesis.
8

Medida de fracao de vazio em escoamento bifasico, gas-agua, em tubos verticais usando absorcao gama

SILVA, RAIMUNDO D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:32:06Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:55Z (GMT). No. of bitstreams: 1 02297.pdf: 1929315 bytes, checksum: 1f3c8c5cb4048eb63b32ec185d9f1b49 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
9

Medida de fracao de vazio em escoamento bifasico, gas-agua, em tubos verticais usando absorcao gama

SILVA, RAIMUNDO D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:32:06Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:55Z (GMT). No. of bitstreams: 1 02297.pdf: 1929315 bytes, checksum: 1f3c8c5cb4048eb63b32ec185d9f1b49 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
10

Measurements in Horizontal Air-water Pipe Flows Using Wire-mesh Sensors

Lessard, Etienne January 2014 (has links)
This thesis is concerned with the performance and measurement uncertainty of wire-mesh sensors in different air-water flow regimes in horizontal pipes. It also presents measurements of void fraction and interfacial velocity in such flows. It was found that the interfacial velocity measurements of the wire-mesh sensors were in good agreement with those taken with a high-speed camera and estimates of the uncertainties of these measurements are presented. Drift-flux models were fitted to the measurements and it was found that the parameters of these models were not only sensitive to the flow regime, but also to the liquid superficial velocity.

Page generated in 0.1338 seconds