101 |
Effects of Plant-plant Airborne Interactions on Performance of Neighboring Plants Using Wild Types and Genetically Modified Lines of Arabidopsis thalianaThelen, Claire 12 August 2020 (has links)
No description available.
|
102 |
Multivariate Analysis of Fungal Volatile Metabolites for Aflatoxigenic Fungi DetectionSun, Dongdi 09 May 2015 (has links)
My research focuses on the development of a novel method for the fast detection of aflatoxin-producing fungi from the volatile organic compounds that they produce. Aflatoxins have received great attention because of their demonstrated potent carcinogenic effect in susceptible laboratory animals and their acute toxicological effects in humans. Traditional detection and quantification techniques are considered time-consuming, high cost, and require technical professionals. The `odor' or so called volatile metabolites released by a fungus is the key for fast detection. Several researchers have reported that diverse fungi species have unique volatile metabolite patterns. This study focuses on answering several questions: Is it possible to discriminate aflatoxins-producing fungi from other fungi based on volatile metabolites? What are the key discriminating biomarkers related to each fungus? Does the growth environment have an effect on the production of volatile metabolites? What chemicals are consistently emitted by a fungus under varied conditions? To answer these questions, one toxigenic and one nontoxigenic A. flavus isolate were studied to evaluate the microbial volatile organic compound (MVOC) profiles. The results described in chapter two of this dissertation indicate that MVOC production is time-dependent and that aflatoxigenic and non-aflatoxigenic strains have different MVOC expression patterns. Chapter three describes the effects of experimental parameters on fungal volatile metabolites. The identity and quantity of MVOCs can be affected by many factors including SPME fiber type, fungal growth media, and growth temperature. A CAR/PDMS coated fiber performed better than the other SPME fibers by collecting a larger variety and quantity of MVOCs. Fungi grown on the chemical defined liquid media produced much larger quantities of MVOCs compared to the other media. The highest MVOC production results were found at 30 degrees Celsius. The fungi discrimination study was extended in chapter four by including 3 toxigenic and 3 non-toxigenic isolates using multivariate analysis. The results indicate that volatile patterns vary even at the fungal isolate level and that discrimination of aflatoxin-producing fungi from non-toxigenic fungi is possible.
|
103 |
Biogenic volatile organic compound emissions in Hong KongTsui, Kin-yin, Jeanie., 徐健賢. January 2006 (has links)
published_or_final_version / abstract / Botany / Master / Master of Philosophy
|
104 |
Models for estimating VOC emissions from latex paintsRamirez, Leonardo Andres 01 June 2010 (has links)
Many models for predicting volatile organic compounds (VOC) emissions from latex paints have been developed. Earlier models were developed for solvent-borne paints, particularly since these paints evaporate rapidly and can be modeled with simple decay models. However, paint has changed in the past fifty years, and a transition has been made towards water-borne paints. These paints were introduced for indoor applications because they lacked the health hazards and odors of their solvent-borne counterparts. These paints also have organic modifiers, therefore it is very important to predict how these modifiers evaporate from the coated material. New mechanistic models that can predict slow emitting VOCs over long periods of time are not available. An improved ability to predict VOC emissions from latex paints could lead to improved understanding, better policy-making and promotion of environmental regulations that benefit both the consumer and producers of architectural coatings. This research improves on existing models used to estimate VOC emissions off-gassed from latex paints. The developed two layer model (2LM) has a layer for paint and substrate material, and accounts for mass transfer at the paint layer, and diffusion transport between paint and material layers. The model provides a semi-mechanistic way to predict paint drying and VOC emissions from coatings on a variety of substrates. The model only requires the estimation of one parameter (the paint layer diffusion coefficient), unlike other models available that require multiple parameter estimations. This model is robust in the sense that it could be used to predict VOC emissions from paint, as well as predicting the variation of the internal VOC distribution on both paint and material layers with time. The model was tested and validated with empirical data collected from previous controlled chamber experiments, and also with data collected from short evaporation experiments. Critical paint components like polymer and pigment composition and its relation to VOC fate and transport after paint application, both initially and over long periods of time, were explored. Modeling results indicated that the diffusion coefficient of 2,2,4-trimethyl-1,3-pentadediol monoisobutyrate (TMPD-MIB) in the paint layer does not depend on the thickness of the wet paint film, but it depends on the pigment volume concentration (PVC) of the paint. Additionally, a constant diffusion coefficient used in the 2LM was successful for modeling emissions of TMPD-MIB from low pigment volume concentration (LPVC) paints, but it failed to capture the physical mechanisms of the drying film for high pigment volume concentration (HPVC) paints. A major finding from this research was that a detailed gas phase analysis of mass transport for TMPD-MIB would have negligible effects on the predicted overall evaporation rate. Therefore, the entire wet and dry emissions processes are likely dominated by diffusion processes. / text
|
105 |
DNA damage and repair detected by the comet assay in lymphocytes of African petrol attendants : a pilot study / G.S. KeretetseKeretetse, Goitsemang Salvation January 2007 (has links)
Petrol attendants are exposed to petrol volatile organic compounds (VOCs) which may have genotoxic and carcinogenic effects. The single cell gel electrophoresis assay (comet assay) is a method highly sensitive to DNA damage induced by environmental and occupational exposure to carcinogenic and mutagenic agents. The aim of this study was to evaluate the level of exposure of petrol attendants to petrol VOCs and also to determine their effect on DNA damage and repair in lymphocytes of African petrol attendants. The exposed group consisted of 20 subjects, randomly selected from three petrol stations. A control group of 20 unexposed subjects was also chosen and matched for age and smoking habits with the exposed group. Sorbent tubes were used to assess personal exposure of petrol attendants. The comet assay was used to investigate the basal DNA damage and repair capacity in isolated lymphocytes of petrol attendants and control subjects. Blood samples were taken from the petrol attendants at the end of their 8 hour working shift and also from the control subjects. The petrol attendants were found to be exposed to levels of petrol VOCs lower than the occupational exposure limit (OEL) for constituent chemicals. A significant relationship was found between the volume of petrol sold during the shift and the average concentrations of benzene, toluene and the total VOCs measured. However, relative humidity had a negative correlation with the average concentrations of benzene, toluene, xylene and the total VOCs. Significantly higher basal DNA damage was observed with the exposed group compared to the control group. The period of exposure influenced the level of DNA damage and the calculated repair capacity. Smoking and age had a significant influence on the level of DNA damage. DNA repair capacity was delayed in smokers of both exposed and non-exposed group. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2008.
|
106 |
Fluxes and mixing ratios of biogenic volatile organic compounds in temperate plant canopiesCopeland, Nichola January 2013 (has links)
Biogenic volatile organic compounds (BVOC) are a wide-ranging group of trace gas components in the atmosphere which are emitted naturally from Earth’s surface. It is now recognised that biogenically sourced VOCs are far more significant on a global scale than those from anthropogenic sources, with up to 10 times greater emissions. Very few field-based studies of fluxes from plant canopies have been undertaken, particularly for non-terpenoid compounds. This thesis presents mixing ratio and flux measurements of BVOC from a range of temperate plant canopies: Douglas fir, short-rotation coppice willow, Miscanthus and mixed peatland vegetation. The virtual disjunct eddy covariance technique (vDEC) using a proton transfer reaction mass spectrometer (PTR-MS) as a fast VOC sensor was used for all measurements except for peatlands, where grab samples were collected on adsorbent sampling tubes for later chromatographic analysis. The PTR-MS was also utilised for measuring the rate of degradation of VOCs during laboratory chamber experiments. Mixing ratios and fluxes of VOCs measured within and above a Douglas fir forest were the first canopy-scale measurements for this species. Fluxes of monoterpenes were comparable to previous studies while isoprene was also detected (standard emissions factors up to 1.15 μg gdw -1 h-1 and 0.18 μg gdw -1 h-1, respectively). Emissions of oxygenated VOCs were also found to be significant, highlighting the importance of quantifying a wider variety of VOCs from biogenic sources, other than isoprene and monoterpenes. Results for bioenergy crops Miscanthus and willow showed that willow was a high isoprene emitter (20 μg gdw -1 h-1), but no measureable VOCs were detected from Miscanthus. This indicates that future expansion of bioenergy crops, and hence species selection, should take resultant air quality and human health impacts – due to changing VOC emissions – into account. Fluxes of BVOC from a Scottish peatland are the first reported measurements for this ecosystem in a temperate climate. Additionally, to assess the impact of nitrogen deposition on VOC fluxes, BVOC measurements were taken from sample plots in a pre-existing, long-term field manipulation study to assess impacts of wet nitrate or ammonium deposition on peatland. The peatland was found to be a significant source of isoprene and monoterpenes (590 and 1.5 μg m-2 h-1 respectively) and there was evidence that emissions were affected by wet nitrogen treatment. Isoprene emissions were reduced by both nitrate and ammonium treatment, while nitrate increased β- pinene fluxes. Increasing atmospheric nitrogen concentrations are therefore predicted to have an impact on VOC emission. Chamber studies showed that the rate of loss of α-pinene from the gas-phase during oxidation – and hence potential formation of secondary organic aerosol (SOA) – decreased with increasing isoprene mixing ratio. This was not observed for limonene. These results show that as isoprene mixing ratios increase with increasing global temperatures, negative feedback on radiative forcing from SOA particles may be suppressed. Results from this thesis provide valuable experimental data for a range of temperate plant canopies, which will help constrain modelled predictions of future VOC emissions. Additionally, the importance of understanding the effects of land use and environmental change on VOC emissions was demonstrated.
|
107 |
Concentrations and fluxes of atmospheric biogenic volatile organic compounds by proton transfer reaction mass spectrometryMisztal, Pawel K. January 2010 (has links)
There are few published direct measurements of the atmosphere-surface exchange of volatile organic compounds (VOCs), particularly for biogenic VOCs (BVOCs). Global modelling of atmospheric chemistry and transport of BVOCs has large uncertainties due to the very small number of measurements in tropical regions, which are responsible for half the global BVOC emissions. This thesis presents direct measurements of concentrations and ecosystem fluxes of BVOCs in different regions (Tropics, Mediterranean) using the approach of virtual disjunct eddy covariance (vDEC) combined with proton transfer reaction mass spectrometry (PTR-MS) – a real-time BVOC sensor. The field measurements also included methodological developments of the vDEC/PTR-MS approach, which will be of value to the wider flux measurement community. A novel approach to determining the lag time between the vertical wind measurement and the air concentration measurement has been developed that will greatly reduce the uncertainty in the derived flux measurements. In the laboratory, the selectivity of PTR-MS was investigated by designing an alternating drift-voltage mode (AD-PTR-MS) to discriminate between structural isomers detected at the same m/z channel, with monoterpenes used as model compounds. The results of the measurements, particularly from the rainforest and oil palm plantations in Borneo, are novel and therefore provide important experimental constraints on models of atmospheric emissions, chemistry and transport. For example, although parameters which work reasonably well can be derived for model algorithms for the emission of isoprene from the rainforest, their performance over oil palms was less good, because of circadian controls of emissions from oil palms. However, the larger problem is the measured basal emission rates (BERs) which are significantly smaller than those used by default in the global MEGAN model. Another novel finding was the high deposition velocities of MVK and MACR (isoprene first order oxidation products) which at the oil palm plantation commonly exceeded 1 cm s-1; this result has implications for atmospheric modelling. The successful field results relied on significant developments in software for data acquisition and processing, and operational optimisation of the PTR-MS instruments in the extreme humidity encountered during the fieldwork in Borneo.
|
108 |
Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth PromotionNieto-Jacobo, Maria F., Steyaert, Johanna M., Salazar-Badillo, Fatima B., Nguyen, Dianne Vi, Rostás, Michael, Braithwaite, Mark, De Souza, Jorge T., Jimenez-Bremont, Juan F., Ohkura, Mana, Stewart, Alison, Mendoza-Mendoza, Artemio 09 February 2017 (has links)
Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.
|
109 |
Metabolomics Investigation of Glyceollins by On-Line Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry and Fungal Metabolite Identification by Thermal Desorption Analysis Coupled with Gas Chromatography-Mass SpectrometryQuadri, Syeda 08 August 2013 (has links)
Metabolomics is an emerging field that entails the detailed characterization of the ensemble of metabolites produced by living organisms; subfields include drug metabolism and natural environmental toxin production. The first part of the dissertation pursued metabolism of glyceollins, i.e., isoflavones produced by soybeans, that are potential cancer therapy agents. In vivo glyceollin metabolites produced in rats were investigated by on-line Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. An odd-electron fragment ion at m/z 148, formed in violation of the even-electron rule, and diagnostic of the glyceollin backbone, was discovered. Based on this finding, a negative mode precursor ion scanning method was developed to screen for glyceollins and their metabolites from biological samples. Products of both Phase I and Phase II metabolism were identified, none of which have been previously reported. Sulfated metabolites were confirmed by accurate mass measurement, while glucuronide conjugation was confirmed by enzyme-assisted glucuronidation by rat liver microsomes. Intact GSH-glyceollin conjugates were not observed, but breakdown products of the GSH pathway, i.e., cysteinylglyceine, cysteine, and acetylated cysteine, were identified as conjugates of oxygenated glyceollins. The identification of GSH by-product conjugates was confirmed in product ion spectra acquired in the negative mode (where peptide anions, and glyceollin-bearing cleaved peptide portions were observed), as well as in the positive mode (where intact oxygenated glyceollin fragments appeared without the initially-present peptide portion). Mass spectral evidence strongly supports a metabolic pathway involving initial epoxidation of glyceollins followed by GSH addition at the epoxidation site.
The second part of the dissertation undertook the investigation of secondary metabolites called microbial volatile organic compounds (MVOCs) produced by fungi (mold) that have been reported to have adverse human health effects. MVOCs were collected onto different sorbent materials and analyzed by Thermal Desorption Analysis coupled with on-line Gas Chromatography-Mass Spectrometry. Fungal MVOCs were characterized from various simulated flooding conditions (brackish, freshwater, and saltwater) and different substrates (nutrient rich vs. low nutrient) to determine diagnostic MVOCs. Ten fungi from simulated environments were identified by genetic sequencing. Cladosporium sp. and Chaetomium sp. were cultivated and their emitted MVOCs, 3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal, were proposed as diagnostic indicators of these fungi.
|
110 |
The Ecology of Floral Signals in Penstemon digitalisBurdon, Rosalie January 2016 (has links)
In this thesis, I combined field observations and lab experiments to explore the ecological significance of floral signals in a North American wildflower, Penstemon digitalis. More specifically, to determine the potential mechanisms driving selection on floral scent, I studied how scent mediates interactions with pollinators and antagonists by (1) observing spatiotemporal variation in scent emission (2), floral volatile ability to suppress microbes (3) the honest advertisement of nectar, and (4) if scent could aid pollinator learning by reinforcing visual signals. Scent sampling of flower development, flower tissues, rewards and inflorescence day/night emission, revealed a complexity in floral scent composition and emission that could reflect several ecological functions. The floral bouquet of P. digitalis was strongest when flowers opened, primarily emitted from flower nectaries and was strongest during the day when pollinators are most active, suggesting a role in plant-pollinator interactions. Because linalool was one of the few floral compounds found in nectar where microbe growth can degrade the pollinator reward, I studied its role in plant-microbe interactions. Bacteria strains isolated from floral and vegetative tissues were exposed to varying concentrations of nectar volatiles: linalool and methyl nicotinate. Linalool inhibited bacteria growth rate from all tissue origins whereas methyl nicotinate had little effect, suggesting that microbes could drive selection on linalool emission strength. To determine the extent that linalool could honestly signal nectar availability, linalool-nectar associations were measured for inflorescences and flowers. Linalool predicted inflorescence nectar availability but not flower, exposing a limit to its honesty. Pollinator Bombus impatiens could use linalool as a foraging signal at varying concentrations, suggesting linalool could be learned and used to choose the most rewarding plants. Measurement and comparison of signal-reward associations for both olfactory and visual signals/cues of P. digitalis displays found display size and linalool honest indicators of nectar. Lab behaviour experiments showed multiple signals correlated with reward could increase bumblebee foraging efficiency and promote learning, providing an explanation for why floral displays are complex and consist of multiple signals. Together my results show that an integrated approach is required to understand the mechanisms driving the evolution of the floral phenotype.
|
Page generated in 0.0958 seconds