• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 44
  • 43
  • 32
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 540
  • 171
  • 136
  • 129
  • 118
  • 63
  • 58
  • 47
  • 46
  • 44
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Systematic geochemical and eruptive relations in the late stage evolution of volcanoes from the Hawaiian plume : with case studies of Waianae and East Molokai volcanoes /

Sawyer, Nuni-Lyn E. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 174-181).
122

Unsteady Jet Dynamics with Implications for Volcanic Plumes

January 2012 (has links)
abstract: Assessments for the threats posed by volcanic eruptions rely in large part on the accurate prediction of volcanic plume motion over time. That predictive capacity is currently hindered by a limited understanding of volcanic plume dynamics. While eruption rate is considered a dominant control on volcanic plume dynamics, the effects of variable eruption rates on plume rise and evolution are not well understood. To address this aspect of plume dynamics, I conducted an experimental investigation wherein I quantified the relationship between laboratory jet development and highly-variable discharge rates under conditions analogous to those which may prevail in unsteady, short-lived explosive eruptions. I created turbulent jets in the laboratory by releasing pressurized water into a tank of still water. I then measured the resultant jet growth over time using simple video images and particle image velocimetry (PIV). I investigated jet behavior over a range of jet Reynolds numbers which overlaps with estimates of Reynolds numbers for short-duration volcanic plumes. By analysis of the jet boundary and velocity field evolution, I discovered a direct relationship between changes in vent conditions and jet evolution. Jet behavior evolved through a sequence of three stages - jet-like, transitional, and puff-like - that correlate with three main injection phases - acceleration, deceleration and off. While the source was off, jets were characterized by relatively constant internal velocity distributions and flow propagation followed that of a classical puff. However, while the source was on, the flow properties - both in the flows themselves and in the induced ambient flow - changed abruptly with changes at the source. On the basis of my findings for unsteady laboratory jets, I conclude that variable eruption rates with characteristic time scales close to eruption duration have first-order control over volcanic plume evolution. Prior to my study, the significance of this variation was largely uncharacterized as the volcanology community predominately uses steady eruption models for interpretation and prediction of activity. My results suggest that unsteady models are necessary to accurately interpret behavior and assess threats from unsteady, short-lived eruptions. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
123

Using computer visualisations to educate and communicate volcanic hazards to at-risk communities

Mani, Lara January 2018 (has links)
With an increase in the number of people living in proximity to active volcanic centres worldwide, there is a greater need to provide effective and engaging education and outreach programmes to reduce vulnerability and prepare exposed communities for potential future volcanic eruptions. The finalisation of the Sendai Framework (UNISDR, 2015a) has also cemented the need for disaster risk managers to engage at-risk communities with education and outreach programmes, to reduce the number of deaths and injuries caused by volcanic eruptions worldwide. Education and outreach programmes are already commonplace for disaster risk reduction, with many taking the form of traditional presentations, maps, diagrams, TV and radio broadcasts. In recent years, there has been a shift towards the use of more creative media to communicate volcanic hazards and engage populations in outreach activities. These have included films, comic strips, puppet shows, board games and video games. However, to-date there is little empirical evidence for the use of these media with at-risk communities. This research seeks to address this issue by providing evidence for the effective use of creative media for volcanic hazard education by adopting the use of video games (or serious games). To assess how effective serious games could be as an education tool, a bespoke video game (St. Vincent’s Volcano) was developed collaborative with disaster risk agencies and communities on the Eastern Caribbean island of St. Vincent and then trialled with adults and students from across the island. A range of outreach sessions were adopted to compare and contrast the applications of the game and to identify the most effective method of its delivery. These sessions included a traditional outreach presentation used as a control, and a group of UK students for a cohort comparison. Data were collected through a mixed-methods approach. Overall the results of the study demonstrate how successful the game can be as an education tool, promoting knowledge improvement in players. The results also demonstrate how the role of the outreach instructor is important to encourage engagement and can result in higher levels of overall positive engagement exhibited by the students. The game was also successful at promoting knowledge gain and engagement with adult participants. The results also demonstrated promise for games in promoting longer-term knowledge retention and for improving awareness of existing outreach materials. This research provides a foundation for the increased integration of emerging technologies within traditional education sessions. The work also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study or to adopt the use of serious games.
124

The role of airphoto and satellite image interpretation in analysing volcanic landforms and structures in the eastern part of the Trans Mexican Volcanic Belt, Mexico /

Werle, Dirk. January 1984 (has links)
No description available.
125

The provenance of eocene tuff beds in the fossil butte member of the Green River formation of Wyoming : relation to the Absaroka and Challis volcanic fields /

Chandler, Matthew R., January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2006. / Includes bibliographical references (p. 42-46).
126

The role of airphoto and satellite image interpretation in analysing volcanic landforms and structures in the eastern part of the Trans Mexican Volcanic Belt, Mexico /

Werle, Dirk. January 1984 (has links)
No description available.
127

Reconnaissance Cenozoic volcanic geology of the Little Goose Creek area, northeastern Elko County, NV with an emphasis on the Jarbidge Rhyolite

Ingalls, Andrew January 1900 (has links)
Master of Science / Department of Geology / Matthew Brueseke / The Little Goose Creek area is located in Elko County, Nevada just south of the central Snake River Plain and in the northeastern Great Basin. During the Miocene, northeastern Nevada was characterized by volcanism as well as prevalent extension and basin development, including widespread occurrences of porphyritic quartz-phyric silicic lavas and domes (e.g., the Jarbidge Rhyolite), ash-flow tuffs, and basaltic volcanism. Recent workers (e.g., Colgan and Henry, 2010) have provided new constraints on the timing of extension in the northern Great Basin (U.S.A.) and indicate that much of it occurred in the mid-Miocene. Other recent work has provided new temporal and petrologic constraints on 16.1 to 15.0 Ma Jarbidge Rhyolite volcanism in the northern Great Basin west of our study area, and suggest that it is intimately linked (spatially and temporally) with the aforementioned extension. This study aims to: [1] understand the spatiotemporal link between the volcanism in the northeastern Nevada study area and potentially correlative volcanism regionally (e.g., Jarbidge Rhyolite and explosive deposits associated with the <13 Ma Bruneau-Jarbidge or Twin Falls eruptive centers); [2] determine if the sampled Jarbidge Rhyolite lavas are chemically similar to those in and around Jarbidge, Nevada. In the Goose Creek area, we report a new laser [superscript]40Ar/[superscript]39Ar age for sanidine of 13.6 ± 0.03 Ma for a crystal-poor rhyolite lava (Rock Springs Rhyolite) and a Jarbidge Rhyolite lava (13.827±0.021 Ma) as well as an age on Jarbidge Rhyolite in Wells, NV (15.249±0.040 Ma) and West Wendover, NV (13.686±0.034 Ma). These lava samples, as well as sampled ash-flow tuffs from the Goose Creek region, plot within the A-type field on discrimination diagrams. The ash-flow tuffs are younger than the Rock Springs Rhyolite based on stratigraphic relationships and are sourced from both the Twin Falls eruptive center as well as the Bruneau Jarbidge eruptive center of the central Snake River Plain based on geochemical analysis. Also, a sequence of basaltic lavas crop out in the Goose Creek drainage; these basalts have ~43 wt.% silica and are chemically similar to <8 Ma olivine tholeiite basalts that crop out to the north, along the southwestern side of the Cassia Mountains, Idaho. These results, field relationships, and prior geological mapping suggest that the lavas and ash-flow tuffs erupted into active extensional basins.
128

Καταγραφή και απεικόνηση [sic] γεωλογικών μνημείων στο ηφαιστειογενές νησί της Νισύρου

Μελαχροινάκη, Μαρία 09 December 2013 (has links)
Η Νίσυρος είναι ένα στρωματοηφαίστειο δομημένο από Πλειοκαινικά ηφαιστειακά προϊόντα που αποτελούνται κυρίως από ανδεσίτες και βασαλτικούς ανδεσίτες πάνω στους οποίους αποτέθηκαν ασβεσταλκαλικά ηφαιστειακά προϊόντα δακιτικής – ρυοδακιτικής σύστασης με την μορφή πυροκλαστικών αποθέσεων, ροών λάβας και δόμων λάβας. Οι νησίδες του Γυαλιού, της Στρογγυλής, της Παχειάς και της Περγούσας, αποτελούνται από Πλειοκαινικούς δόμους ρυολιθικής (Γυαλί), ανδεσιτικής (Στρογγυλή) και δακιτικής σύστασης (Παχειά και Περγούσα) οι οποίοι φιλοξενούν πυροκλαστικές αποθέσεις της ανώτερης κίσσηρης του Γυαλιού (Στρογγυλή) και ενότητες του τόφφου της Κω και της Παναγιάς Κυράς (Παχειά και Περγούσα). Στην εργασία παρουσιάζουμε την ιστορία γένεσης και φωτογραφίες από τη Νίσυρο, ακολουθώντας πέντε μόνο διαδρομές. / In the present dissertation we are recording the geological monuments of Nisyros island. We present the geological history of the island, providing photos of five routes we have followed.
129

Fracture and permeability analysis of the Santana Tuff, Trans-Pecos Texas

Fuller, Carla Matherne 11 December 2009 (has links)
A fracture and permeability analysis was performed on the Santana Tuff because of its similarity to the Topopah Springs unit at the Yucca Mountain site. The Topopah Springs unit is the proposed horizon for the spent nuclear fuel repository. Because of the impossibility of completely characterizing the flow properties of the unit without destroying the characteristics that make it desirable as a repository, other ash flow tuffs must be studied. The Santana Tuff and the Topopah Springs tuff both are rhyolitic in composition, nonwelded to densely welded and fractured. Fractures were examined at six outcrop locations spanning a five mile area. Stereonets and rose diagrams were constructed from over 312 fracture orientations. Although the composite data showed two major orientations of nearly vertical fractures, fracture trends at individual outcrops showed a variety of preferred orientations. Over 900 surface permeability measurements were taken using a mini-permeameter. The samples were categorized by three observed types of surface weathering: fresh, weathered, or varnished. Fracture surfaces were generally classified as weathered. The average permeabilities for the samples are 55.33 millidarcies, 5.03 millidarcies, and 3.31 millidarcies, respectively. The one-way statistical analysis performed on the data indicated that the permeability of fresh tuff surfaces is significantly different than both the permeabilities of the weathered and varnished tuffs, using both a least significant difference and greatest significant difference test. However, no difference was shown to exist between the weathered and varnished tuff permeabilities. Samples of fresh, weathered, and varnished tuffs were examined by X-Ray Defraction, the Scanning Electron Microscope, and in thin section. The SEM analysis showed surface differences between the three weathering classifications. The weathered and varnished samples were similar, exhibiting a platy, lamellate texture. The fresh surfaces were irregular and jagged. In thin section, a thin rind of dark minerals (FE-oxides) is observed on the edges of the varnished samples and in microcracks. This fills surface pores and causes the reduction in permeability. Two other zones of weathering have been identified in some of the samples, which may also cause changes in permeability. Tuff permeabilities were also analyzed for directional dependence. After an ash flow tuff is deposited and cooled, it may undergo flattening of pumice fragments and glass shards. These flattened fragments can be identified in handsamples, and are indicative of the direction of flow emplacement. The analysis showed that permeability is enhanced parallel to the emplacement direction, which is generally horizontal. Cut surfaces showed a 30% decrease in permeability perpendicular to flow direction. On varnished surfaces, this trend is still evident, although decreased in magnitude. This is expected because of the clay particles which make up the desert varnish. This study indicates that the formation of low permeability weathering rinds in association with vertical fractures may inhibit infiltration at the surface. It may accelerate infiltration at depth and allow more fluid to penetrate vertically into the tuff. In the event that fluid is absorbed into the matrix, it will travel horizontally, along the enhanced permeability parallel to the emplacement direction. / text
130

Spatial and temporal distribution of a rhyolite compositional continuum from wet-oxidizing to dry-reducing types governed by lower-middle crustal P-T-ƒO₂-ƒH₂O conditions in the Taupo Volcanic Zone, New Zealand.

Deering, Chad D. January 2009 (has links)
A continuum of rhyolite compositions has been observed throughout the Taupo Volcanic Zone (TVZ) over the past 550 kyr. reflecting changes in the ƒH2O, ƒO₂, and P-T conditions in a lower crustal 'hot-zone' (10-30 km) where these evolved melts are generated by crystal fractionation of successively intruded basaltic magmas. The rhyolite compositional continuum is bound by two distinct end-member types: R1 is characterized by hydrous minerals (hornblende ± biotite), low FeO*/MgO (calc-alkaline series), low MREE, Y, and Zr, and high Sr; and R2 is characterized by anhydrous minerals (orthopyroxene ± clinopyroxene), high FeO*/MgO (tholeiitic series), high MREE, Y, and Zr, and low Sr. Slab-derived aqueous fluid components (Ba, Cl) correlate well with oxygen fugacity, and other well defined characteristics of silicic magmas in the Taupo Volcanic Zone (TVZ) between a cold-wet-oxidizing magma type (R1: amphibole ± biotite; high Sr, low Zr and FeO*/MgO, depleted MREE) and a hot-dry-reducing magma type (R2: orthopyroxene ± clinopyroxene; low Sr, high Zr, and FeO*/MgO, less depleted MREE). Oxygen fugacity was obtained from analysis of Fe-Ti oxides and ranges between -0.039 to +2.054 log units (ΔQFM; where QFM = quartz + fayalite + magnetite buffer) and is positively correlated with the bulk-rock Ba/La ratio, indicating that slab-derived fluid is the oxidizing agent in the rhyolites. Chlorine contents in hornblende also correlate with the bulk-rock Ba/La ratio. Hence, high fluid-flux typically correlates with the R1 and low fluid-flux with R2 rhyolite magma types. A geochemical evolution and distribution can be tracked in time and space throughout the central region of the TVZ from 550 ka to present and has revealed two distinct magmatic cycles that vary in length. The first cycle included widespread R1 type magmatism across the central TVZ beginning ca. 550 ka and was directly associated with previously unreported dome-building and ignimbrite-forming volcanism, and led to a voluminous (>3000 km³) ignimbrite 'flare-up' between ca. 340 and 240 ka. These magmas also display the highest K₂O and Pb isotopic compositions compared to those erupted more recently, and is consistent with a peak in slab-derived sediment input. The second cycle began roughly 180 ka, erupting ca. 800 km³ of magma, and continues to the present. The duration, rate, and composition of melt production within these cycles appears to be governed by the flux of fluid/sediment released from the subducting slab, while the distribution of melts may be governed more by extension along the central rift axis. The Matahina Ignimbrite (~160 km³ rhyolite magma; 330 ka) was deposited during a caldera-forming eruption from the Okataina Volcanic Centre, TVZ. The outflow sheet is distributed primarily from the northeast to southeast and consists of a basal plinian fall member and three ash-flow members. Pumice clasts are separated into three groups defined by differences in bulk geochemistry and mineral contents: high CaO, MgO, Fe₂O₃T, TiO₂, and low Al₂O₃, +hornblende (A2), low CaO, MgO, Fe2O3T, TiO2, ±hornblende (A1), and a subset to A1, which has high-K, +biotite (B). Two types of crystal-rich mafic clasts were also deposited during the final stages of the eruption. The distinct A and B rhyolite magma types are petrogenetically related to corresponding type A and B andesitic magma by up to 50% crystal fractionation under varying ƒO₂-ƒH₂O conditions. Further variations in the low- to high-silica rhyolites can be accounted for by up to 25% crystal fractionation, again under distinct ƒO₂-ƒH₂O conditions. Reconstruction of the P-T-ƒO₂-ƒ’H₂O conditions of the andesite to rhyolite magmas are consistent with the existence of a compositional and thermal gradient prior to the eruption. Magma mingling/mixing between the basalt to andesite and main compositionally zoned rhyolitic magma occurred during caldera-collapse, modifying the least-evolved rhyolite at the bottom of the reservoir and effectively destroying the pre-eruptive gradients. A detailed examination of the diverse range of calcic-amphibole compositions from the ca. 330 ka Matahina eruption (ca. 160 km³ rhyolitic magma) of the Okataina Volcanic Complex, Taupo Volcanic Zone, including crystal-rich basalt to dacite pumice from post-collapse deposits, reveals several pre- and syn-eruption magmatic processes. (1) Amphibole phenocrysts in the basaltic-andesite and andesite crystallized at the highest pressures and temperatures (P: up to 0.6±0.06 GPa and T: up to 950°C), equivalent to mid-crustal depths (13-22 km). Inter- and intra-crystalline compositions range from Ti-magnesiohornblende → Ti-tschermakite → tschermakite → magnesiohornblende and some display gradual decreases in T from core to rim, both consistent with magma differentiation by cooling at depth. (2) The largest amphibole crystals from the basaltic-andesite to andesite display several core to rim increases in T (up to 70°C), indicating new hotter magma periodically fluxed the crystal mush. (3) The dominant population of amphibole (magnesiohornblende) from the rhyolite is small and bladed and crystallized at low P-T conditions (P: 0.3 GPa, T: 765°C), equivalent to the eruptive P-T conditions. Amphibole (tschermakite-magnesiohornblende) from the dacitic and low-silica rhyolitic pumice form two distinct populations, which nucleated at two different T (High: 820°C and Low: 750°C). These compositional variations, governed primarily by differences in T conditions during crystal growth, record the mixing of two distinct amphibole populations that approached a thermal equilibrium at the eruptive T. Therefore, the diversity in amphibole compositions can be reconciled as an exchange of crystals+liquid between the basaltic-andesite to dacite from the mid-crust and rhyolite from the upper-crust, which quenched against one another, modifying the dacite to low-silica rhyolite compositions as the eruption progressed.

Page generated in 0.0489 seconds