1 |
The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopesWinter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood.
Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism.
The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition.
Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation.
|
2 |
The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopesWinter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood.
Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism.
The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition.
Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation.
|
3 |
The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopesWinter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood.
Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism.
The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition.
Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
Page generated in 0.0802 seconds