Spelling suggestions: "subject:"volcanic)""
1 |
Extensional deformation and volcanism within the northern puertecitos volcanic province, Sierra Santa Isabel, Baja California, MexicoNagy, Elizabeth Ann. Stock, J. M. January 1900 (has links)
Thesis (Ph. D.)--California Institute of Technology, 1997. UM #9800392. / Advisor names found in the Acknowledgments pages of the thesis. Title from home page. Viewed 02/17/2010. Includes bibliographical references.
|
2 |
A comparative study of Archaean and Proterozoic felsic volcanic associations in Southern Australia /Giles, Christopher William. January 1980 (has links) (PDF)
Thesis (Ph.D.)-- University of Adelaide, Dept. of Geology, 1982. / Typescript (photocopy).
|
3 |
Evolution of dynamic volcanic landscapesBailey, John E., January 2005 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 227-246).
|
4 |
The evolution of silicic magmatism in the post-caldera volcanism of the Phlegrean Fields, Italy /Roach, Angela Louise. January 2005 (has links)
Thesis (Ph.D.)--Brown University, 2005. / Vita. Thesis advisor: Malcolm J. Rutherford. Includes bibliographical references (leaves 29-32, 82-84, 129-131). Also available online.
|
5 |
The termination of the Basin and Range Province into a clockwise rotating region of transtension and volcanism, central Oregon /Trench, David. January 2008 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 59-62). Also available on the World Wide Web.
|
6 |
Sulphur-silicate interactions on the Jovian satellite IoDavies, A. G. January 1988 (has links)
No description available.
|
7 |
The lithospheric structure of western Turkey : crustal deformation in an extending regionSaunders, Paul Nicholas January 1996 (has links)
No description available.
|
8 |
Large volume explosive silicic volcanism in the Central Andes of N. ChileDe Silva, Shanaka Lilath January 1987 (has links)
No description available.
|
9 |
The evolution of the Eyjafjöll volcanic system, southern IcelandLoughlin, Susan C. January 1995 (has links)
No description available.
|
10 |
Low-Shield Volcanism: A Comparison of Volcanoes on Syria Planum, Mars and Snake River Plain, IdahoHenderson, Amanda Olivia 01 November 2015 (has links)
Volcanoes are key indicators of a planet's internal structure, mechanics, and evolutionary history. Consequently, understanding the types and ages of volcanoes on a planet's surface is an important endeavor. In an attempt to better understand the relationship between morphometry and volcanic processes, we compared low-shield volcanoes on Syria Planum, Mars, with basaltic shields of the eastern Snake River Plain. We used 133 volcanoes on Syria Planum that are covered by Mars Orbiting Laser Altimeter (MOLA) and High Resolution Stereo Camera (HRSC) elevation data and 246 eSRP shields covered by the National Elevation Dataset (NED) for this comparison. Shields on Syria Planum average 191 +/- 88 m tall, 12 +/- 6 km in diameter, 16 +/- 28 km3 in volume, and have 1.7° +/- 0.8 flank slopes. eSRP shields average 83 +/- 44 m tall, 4 +/- 3 km in diameter, 0.8 +/- 2 km3 in volume, and have 2.5° +/- 1 flank slopes. Bivariate plots of morphometric characteristics show that Syria Planum and Snake River Plain low shields form the extremes of the same morphospace shared with some Icelandic olivine tholeiite shields, but are generally distinct from other terrestrial volcanoes. Cluster analysis of Syria Planum and Snake River Plain shields with other terrestrial volcanoes separates these volcanoes into one cluster and the majority of them into the same sub-cluster that is distinct from other terrestrial volcanoes. Principal component and cluster analysis of Syria Planum and Snake River Plain shields using height, area, volume, slope, and eccentricity shows that Syria Planum and Snake River Plain low-shields are similar in shape (slope and eccentricity). Apparently, these low shields formed by similar processes involving Hawaiian-type eruptions of low viscosity (mafic) lavas with fissure controlled eruptions, narrowing to central vents. Initially high eruption rates and long, tube-fed lava flows shifted to the development of small lava lakes that repeatedly overflowed, and on some with late fountaining to form steeper spatter ramparts. However, Syria Planum shields are systematically larger than those on the eastern Snake River Plain. The larger size of Syria Planum shields is likely due to the smaller gravity of Mars, requiring larger magma batches to generate sufficient buoyant force to overcome the strength of rocks in the lithosphere and rise to the surface. Thus, Syria Planum lavas erupt in larger volumes and at higher rates generating larger volcanoes with slightly smaller slopes.
|
Page generated in 0.0435 seconds