• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 27
  • 18
  • 12
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Task Selection Based Power-aware Scheduling Algorithm for Applying DVS

Mori, Yuichiro, Asakura, Koichi, Watanabe, Toyohide 08 November 2009 (has links)
No description available.
2

Reduction of Cache Related Preemption Delay using DVS in Real Time Systems

Chandrashekar, Aravind 01 May 2011 (has links)
Aravind Chandrashekar, for the Master of Science degree in Electrical and Computer, presented on 02/09/2011, at Southern Illinois University Carbondale. TITLE: Reduction of Cache Related Preemption Delay using DVS in Real Time Systems MAJOR PROFESSOR: Dr. Harini Ramaprasad Embedded/real-time systems are ubiquitous in today's world. Providing temporal guarantees is paramount in such systems. In several multi-tasking real-time systems, tasks are assigned varying priorities and scheduled in accordance with a preemptive scheduling policy. When a task is preempted, a significant number of memory blocks belonging to the particular task are displaced from the cache memory between the time that the task is preempted and the time that the task resumes execution. Upon resumption, a corresponding amount of time is spent in reloading the cache with previously replaced memory blocks, thereby incurring what is known as cache-related preemption delay (CRPD). CRPD of a task due to a given preemption depends on the position in the program where the preempted task is executing at the time of preemption. As such, CRPD at different preemption points may be significantly different. In this thesis, we exploit this difference in CRPD and use dynamic voltage/frequency scaling (DVFS) to control the execution speed of a task such that it gets preempted in regions where the CRPD is low, as far as is possible without jeopardizing system schedulability. Simulation results demonstrate that our algorithm reduces number of cache reloads due to preemption to a reasonable extent, thereby reducing the repeated usage of off-chip memory bandwidth.
3

Operating system directed power management

Snowdon, David, Computer Science & Engineering, Faculty of Engineering, UNSW January 2010 (has links)
Energy is a critical resource in all types of computing systems from servers, where energy costs dominate data centre expenses and carbon footprints, to embedded systems, where the system's battery life limits the device's functionality. In their efforts to reduce the energy use of these system's hardware manufacturers have implemented features which allow a reduced energy consumption under software control. This thesis shows that managing these settings is a more complex problem than previously considered. Where much (but not all) of the previous academic research investigates unrealistic scenarios, this thesis presents a solution to managing the power on varying hardware. Instead of making unrealistic assumptions, we extract a model from empirical data and characterise that model. Our models estimate the effect of different power management settings on the behaviour of the hardware platform, taking into account the workload, platform and environmental characteristics, but without any kind of a-priori knowledge of the specific workloads being run. These models encapsulate a system's knowledge of the platform. We also developed a \emph{generalised energy-delay} policy which allows us to quickly express the instantaneous importance of both performance and energy to the system. It allows us to select a power management strategy from a number of options. This thesis shows, by evaluation on a number of platforms, that our implementation, Koala, can accurately meet energy and performance goals. In some cases, our system saves 26\% of the system-level energy required for a task, while losing only 1\% performance. This is nearly 46\% of the dynamic energy. Taking advantage of all energy-saving opportunities requires detailed platform, workload and environmental information. Given this knowledge, we reach the exciting conclusion that near optimal power management is possible on real operating systems, with real platforms and real workloads.
4

Operating system directed power management

Snowdon, David, Computer Science & Engineering, Faculty of Engineering, UNSW January 2010 (has links)
Energy is a critical resource in all types of computing systems from servers, where energy costs dominate data centre expenses and carbon footprints, to embedded systems, where the system's battery life limits the device's functionality. In their efforts to reduce the energy use of these system's hardware manufacturers have implemented features which allow a reduced energy consumption under software control. This thesis shows that managing these settings is a more complex problem than previously considered. Where much (but not all) of the previous academic research investigates unrealistic scenarios, this thesis presents a solution to managing the power on varying hardware. Instead of making unrealistic assumptions, we extract a model from empirical data and characterise that model. Our models estimate the effect of different power management settings on the behaviour of the hardware platform, taking into account the workload, platform and environmental characteristics, but without any kind of a-priori knowledge of the specific workloads being run. These models encapsulate a system's knowledge of the platform. We also developed a \emph{generalised energy-delay} policy which allows us to quickly express the instantaneous importance of both performance and energy to the system. It allows us to select a power management strategy from a number of options. This thesis shows, by evaluation on a number of platforms, that our implementation, Koala, can accurately meet energy and performance goals. In some cases, our system saves 26\% of the system-level energy required for a task, while losing only 1\% performance. This is nearly 46\% of the dynamic energy. Taking advantage of all energy-saving opportunities requires detailed platform, workload and environmental information. Given this knowledge, we reach the exciting conclusion that near optimal power management is possible on real operating systems, with real platforms and real workloads.
5

Self-tuning dynamic voltage scaling techniques for processor design

Park, Junyoung 30 January 2014 (has links)
The Dynamic Voltage Scaling (DVS) technique has proven to be ideal in regard to balancing performance and energy consumption of a processor since it allows for almost cubic reduction in dynamic power consumption with only a nearly linear reduction in performance. Due to its virtue, the DVS technique has been used for the two main purposes: energy-saving and temperature reduction. However, recently, a Dynamic Voltage Scaled (DVS) processor has lost its appeal as process technology advances due to the increasing Process, Voltage and Temperature (PVT) variations. In order to make a processor tolerant to the increasing uncertainties caused by such variations, processor designers have used more timing margins. Therefore, in a modern-day DVS processor, reducing voltage requires comparatively more performance degradation when compared to its predecessors. For this reason, this technique has a lot of room for improvement for the following facts. (a) From an energy-saving viewpoint, excessive margins to account for the worst-case operating conditions in a DVS processor can be exploited because they are rarely used during run-time. (b) From a temperature reduction point of view, accurate prediction of the optimal performance point in a DVS processor can increase its performance. In this dissertation, we propose four performance improvement ideas from two different uses of the DVS technique. In regard to the DVS technique for energy-saving, in this dissertation, we introduce three different types of margin reduction (or margin decision) techniques. First, we introduce a new indirect Critical Path Monitor (CPM) to make a conventional DVS processor adaptive to its given environment. Our CPM is composed of several Slope Generators, each of which generates similar voltage scaling slopes to those of potential critical paths under a process corner. Each CPR in the Slope Generator tracks the delays of potential critical paths with minimum difference at any condition in a certain voltage range. The CPRs in the same Slope Generator are connected to a multiplexer and one of them is selected according to a current voltage level. Calibration steps are done by using conventional speed-binning process with clock duty-cycle modulation. Second, we propose a new direct CPM that is based on a non-speculative pre-sampling technique. A processor that is based on this technique predicts timing errors in the actual critical paths and undertakes preventive steps in order to avoid the timing errors in the event that the timing margins fall below a critical level. Unlike direct CPM that uses circuit-level speculative operation, although the shadow latch can have timing error, the main Flip-Flop (FF) of our direct CPM never fails, guaranteeing always-correct operation of the processor. Our non-speculative CPM is more suitable for high-performance processor designs than the speculative CPM in that it does not require original design modification and has lower power overhead. Third, we introduce a novel method that determines the most accurate margin that is based on the conventional binning process. By reusing the hold-scan FFs in a processor, we reduce design complexity, minimize hardware overhead and increase error detecting accuracy. Running workloads on the processor with Stop-Go clock gating allows us to find which paths have timing errors during the speed binning steps at various, fixed temperature levels. From this timing error information, we can determine the different maximum frequencies for diverse operating conditions. This method has high degree of accuracy without having a large overhead. In regard to the DVS technique for temperature reduction, we introduce a run-time temperature monitoring scheme that predicts the optimal performance point in a DVS processor with high accuracy. In order to increase the accuracy of the optimal performance point prediction, this technique monitors the thermal stress of a processor during run-time and uses several Look-Up Tables (LUTs) for different process corners. The monitoring is performed while applying Stop-Go clock gating, and the average EN value is calculated at the end of the monitoring time. Prediction of the optimal performance point is made using the average EN value and one of the LUTs that corresponds to the process corner under which the processor was manufactured. The simulation results show that we can achieve maximum processor performance while keeping the processor temperature within threshold temperature. / text
6

DYNAMIC VOLTAGE SCALING FOR PRIORITY-DRIVEN SCHEDULED DISTRIBUTED REAL-TIME SYSTEMS

Wang, Chenxing 01 January 2007 (has links)
Energy consumption is increasingly affecting battery life and cooling for real- time systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to substantially reduce the energy consumption of uniprocessor real-time systems. It is worthwhile to extend the efficient DVS scheduling algorithms to distributed system with dependent tasks. The dissertation describes how to extend several effective uniprocessor DVS schedul- ing algorithms to distributed system with dependent task set. Task assignment and deadline assignment heuristics are proposed and compared with existing heuristics concerning energy-conserving performance. An admission test and a deadline com- putation algorithm are presented in the dissertation for dynamic task set to accept the arriving task in a DVS scheduled real-time system. Simulations show that an effective distributed DVS scheduling is capable of saving as much as 89% of energy that would be consumed without using DVS scheduling. It is also shown that task assignment and deadline assignment affect the energy- conserving performance of DVS scheduling algorithms. For some aggressive DVS scheduling algorithms, however, the effect of task assignment is negligible. The ad- mission test accept over 80% of tasks that can be accepted by a non-DVS scheduler to a DVS scheduled real-time system.
7

Static Task Scheduling Algorithms Based on Greedy Heuristics for Battery-Powered DVS Systems

TAKADA, Hiroaki, TOMIYAMA, Hiroyuki, ZENG, Gang, YOKOYAMA, Tetsuo 01 October 2010 (has links)
No description available.
8

Energy Efficient Design for Deep Sub-micron CMOS VLSIs

Elgebaly, Mohamed January 2005 (has links)
Over the past decade, low power, energy efficient VLSI design has been the focal point of active research and development. The rapid technology scaling, the growing integration capacity, and the mounting active and leakage power dissipation are contributing to the growing complexity of modern VLSI design. Careful power planning on all design levels is required. This dissertation tackles the low-power, low-energy challenges in deep sub-micron technologies on the architecture and circuit levels. Voltage scaling is one of the most efficient ways for reducing power and energy. For ultra-low voltage operation, a new circuit technique which allows bulk CMOS circuits to work in the sub-0. 5V supply territory is presented. The threshold voltage of the slow PMOS transistor is controlled dynamically to get a lower threshold voltage during the active mode. Due to the reduced threshold voltage, switching speed becomes faster while active leakage current is increased. A technique to dynamically manage active leakage current is presented. Energy reduction resulting from using the proposed structure is demonstrated through simulations of different circuits with different levels of complexity. As technology scales, the mounting leakage current and degraded noise immunity impact performance especially that of high performance dynamic circuits. Dual threshold technology shows a good potential for leakage reduction while meeting performance goals. A model for optimally selecting threshold voltages and transistor sizes in wide fan-in dynamic circuits is presented. On the circuit level, a novel circuit level technique which handles the trade-off between noise immunity and energy dissipation for wide fan-in dynamic circuits is presented. Energy efficiency of the proposed wide fan-in dynamic circuit is further enhanced through efficient low voltage operation. Another direct consequence of technology scaling is the growing impact of interconnect parasitics and process variations on performance. Traditionally, worst case process, parasitics, and environmental conditions are considered. Designing for worst case guarantees a fail-safe operation but requires a large delay and voltage margins. This large margin can be recovered if the design can adapt to the actual silicon conditions. Dynamic voltage scaling is considered a key enabler in reducing such margin. An on-chip process identifier to recover the margin required due to process variations is described. The proposed architecture adjusts supply voltage using a hybrid between the one-time voltage setting and the continuous monitoring modes of operation. The interconnect impact on delay is minimized through a novel adaptive voltage scaling architecture. The proposed system recovers the large delay and voltage margins required by conventional systems by closely tracking the actual critical path at anytime. By tracking the actual critical path, the proposed system is robust and more energy efficient compared to both the conventional open-loop and closed-loop systems.
9

Implementation and Evaluation of Single Filter Frequency Masking Narrow-Band High-Speed Recursive Digital Filters / Implementering och utvärdering av smalbandiga rekursiva digitala frekvensmaskningsfilter för hög hastighet med identiska subfilter

Mohsén, Mikael January 2003 (has links)
In this thesis two versions of a single filter frequency masking narrow-band high-speed recursive digital filter structure, proposed in [1], have been implemented and evaluated considering the maximal clock frequency, the maximal sample frequency and the power consumption. The structures were compared to a conventional filter structure, that was also implemented. The aim was to see if the proposed structure had some benefits when implemented and synthesized, not only in theory. For the synthesis standard cells from AMS csx 0.35 mm CMOS technology were used.
10

Energy Efficient Design for Deep Sub-micron CMOS VLSIs

Elgebaly, Mohamed January 2005 (has links)
Over the past decade, low power, energy efficient VLSI design has been the focal point of active research and development. The rapid technology scaling, the growing integration capacity, and the mounting active and leakage power dissipation are contributing to the growing complexity of modern VLSI design. Careful power planning on all design levels is required. This dissertation tackles the low-power, low-energy challenges in deep sub-micron technologies on the architecture and circuit levels. Voltage scaling is one of the most efficient ways for reducing power and energy. For ultra-low voltage operation, a new circuit technique which allows bulk CMOS circuits to work in the sub-0. 5V supply territory is presented. The threshold voltage of the slow PMOS transistor is controlled dynamically to get a lower threshold voltage during the active mode. Due to the reduced threshold voltage, switching speed becomes faster while active leakage current is increased. A technique to dynamically manage active leakage current is presented. Energy reduction resulting from using the proposed structure is demonstrated through simulations of different circuits with different levels of complexity. As technology scales, the mounting leakage current and degraded noise immunity impact performance especially that of high performance dynamic circuits. Dual threshold technology shows a good potential for leakage reduction while meeting performance goals. A model for optimally selecting threshold voltages and transistor sizes in wide fan-in dynamic circuits is presented. On the circuit level, a novel circuit level technique which handles the trade-off between noise immunity and energy dissipation for wide fan-in dynamic circuits is presented. Energy efficiency of the proposed wide fan-in dynamic circuit is further enhanced through efficient low voltage operation. Another direct consequence of technology scaling is the growing impact of interconnect parasitics and process variations on performance. Traditionally, worst case process, parasitics, and environmental conditions are considered. Designing for worst case guarantees a fail-safe operation but requires a large delay and voltage margins. This large margin can be recovered if the design can adapt to the actual silicon conditions. Dynamic voltage scaling is considered a key enabler in reducing such margin. An on-chip process identifier to recover the margin required due to process variations is described. The proposed architecture adjusts supply voltage using a hybrid between the one-time voltage setting and the continuous monitoring modes of operation. The interconnect impact on delay is minimized through a novel adaptive voltage scaling architecture. The proposed system recovers the large delay and voltage margins required by conventional systems by closely tracking the actual critical path at anytime. By tracking the actual critical path, the proposed system is robust and more energy efficient compared to both the conventional open-loop and closed-loop systems.

Page generated in 0.0591 seconds