• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multiaxial warp knitting based yarn path manipulation technology for the production of bionic-inspired multifunctional textile reinforcements in lightweight composites

Sankaran, Vignaesh, Ruder, Tristan, Rittner, Steffen, Hufnagl, Evelin, Cherif, Chokri 09 October 2019 (has links)
Composites have now revolutionized most industries, like aerospace, marine, electrical, transportation, and have proved to be a worthy alternative to other traditional materials. However for a further comprehensive usage, the tailorability of hybrid composites according to the specific application needs on a large-scale production basis is required. In this regard, one of the major fundamental research fields here involves a technology development based on the multiaxial warp-knitting technique for the production of bionic-inspired and application-specific textile preforms that are force compliant and exhibit multi-material design. This article presents a newly developed yarn (warp) path manipulation unit for multiaxial warp-knitting machines that enables a targeted production of customized textile preforms with the above characteristics. The technological development cycle and their experimental validation to demonstrate the feasibility of new technology through production of some patterns for different field of applications are then discussed.
2

Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement

Mallach, Annegret, Härtel, Frank, Heieck, Frieder, Fuhr, Jan-Philipp, Middendorf, Peter, Gude, Maik 29 October 2019 (has links)
Scope of the presented work is a detailed comparison of a macroscopic draping model with real fibre architecture on a complex non-crimp-fabric preform using a new robot-based optical measurement system. By means of a preliminary analytical process design approach, a preforming test centre is set up to manufacture dry non-crimp-fabric preforms. A variable blank holder setup is used to investigate the effect of different process parameters on the fibre architecture.The real fibre architecture of those preforms is captured by the optical measurement system, which generates a threedimensional model containing information about the fibre orientation along the entire surface of the preform. The measured and calculated fiber orientations are then compared with the simulation results in a three-dimensional overlay file. The results show that the analytical approach is able to predict local hot spots with high shear angles on the preform. Macroscopic simulations show a higher sensitivity towards changes in blank holder pressure than reality and limit the approach to precisely predict fibre architecture parameters on complex geometries.

Page generated in 0.0405 seconds