• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Numerical Simulation and Experimental Study of Vortex Rings.

Wang, Jianqin 02 1900 (has links)
The objective of this research was to investigate parameters affecting vortex ring formation and propagation and their application to mixing of fluids. To this end both empirical and numerical simulation experiments were conducted. The empirical experiments involved observations and measurement of the volume, displacement and velocity of vortex rings generated from a 5 cm diameter tube. The results revealed that there is an optimal range of generation injection velocity for various mixing requirements. The numerical simulations were done using a commercial package, FLUENT. Both tube type and plate orifice type vortex ring generators were investigated. Also the affects of a central shaft and various projections on the control of the motion of a vortex ring. All models considered a polar model cylindrical tank with a diameter to height ratio of 3:10. The average injection velocity was in the range of 0.7 m/s to 3 m/s. When simulating the tube type generator various injection velocity profiles and value were investigated, which resulted in a fitted correlations of nondimension displacement versus non-dimension time as a function of infection profile. In order to control the forward motion of vortex rings some obstructions were considered. It was found that the trajectory and energy of a vortex ring can be controlled with shape and geometries of baffles. In the simulations for the orifice plate type generator, a moving mesh technique was used. As expected a pair of vortex rings were produced per half cycle of the plate oscillation, but they did not travel as fast as expected. Recommendations have been made to improve the simulation accuracy. It has also been found that the FLUENT package will not properly simulate turbulent vortex rings. However, this may be because a vortex ring is not truly homogeneously turbulent. The use of a laminar model appears to give quite good agreement with empirical data for tube type vortex ring generator. The results of this research are expected to be useful for the optimization of the design of vortex ring mixing systems. / Thesis / Master of Engineering (ME)

Page generated in 0.1178 seconds