• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einbindung von Rechenzentrumsabwärme in ein Nahwärmenetz zur Versorgung eines Wohnquartiers

Stahlhut, Maximilian, Nefodov, Dimitri, Urbaneck, Thorsten 20 June 2024 (has links)
Rechenzentren und deren elektrischen/elektronischen Komponenten benötigen eine permanente Kühlung. Den größten Kühlbedarf im Rechenzentrum haben die Server, auf denen die Rechentechnik (CPU, RAM usw.) verbaut ist. Eine effiziente Wärmeabfuhr der Serverabwärme ermöglicht die Direktflüssigkeitskühlung. Bei dieser Kühltechnologie verlässt das Kühlmedium Wasser das Rack mit einer maximalen Austrittstemperatur von TIT,Aus,max  = 50…60 °C. Eine ganzjährig freie Kühlung mit Trockenkühlern entspricht dem Stand der Technik. Gleichzeitig ist auch eine Wärmerückgewinnung der Rechenzentrumsabwärme für verschiedene Anwendungsszenarien denkbar. In diesem Beitrag wird deswegen die Wärmenutzung von Rechenzentren mit Direktflüssigkeitskühlung zur Versorgung eines Quartiers mit einer Spitzenlast von 1855 kW und einer jährlichen Wärmelast von 5078 MWh thematisiert. Eine Anhebung des Temperaturniveaus der Rechenzentrumsabwärme auf das Nutztemperaturniveau des Nahwärmenetzes TVL,Netz = 75 °C erfolgt mit zwei Wärmepumpe mit je zwei Verdichtern (Kältemittel R1234ze(E)). Die Untersuchung analysiert dabei mittels transienter Anlagensimulation in TRNSYS die Auswirkung verschiedener Rechenzentrumsgrößen auf die Deckung der Heizlast des Quartiers sowie den Anteil der wiederverwendeten Energie des Rechenzentrums ERF (Energy Reuse Factor). Die Ergebnisse zeigen unter den getroffenen Annahmen, dass bei einer IT-Anschlussleistung von Pel,IT,max = 2200 kW die Wärmelast des Netzes vollständig gedeckt wird mit einem ERF = 0,38 (Web-Lastprofil). Ein weiterer Anstieg der Rechenzentrumsgröße reduziert den Anteil der wiederverwendeten Energie des Rechenzentrums. Ab einem Verhältnis von Pel,IT,max / QNetz,a  = 0,83 kWel/(MWhth/a) ist der ERF ≤ 0,2. Im Hinblick auf Diskussionen zur gesetzlichen Verpflichtungen zur Abwärmenutzung von Rechenzentren (z. B. Energieeffizienzgesetz in Deutschland) spielt das Verhältnis aus Rechenzentrumsgröße und Wärmelast des Quartiers eine entscheidende Rolle.
2

Mathcad-Bibliotheken für thermodynamische Stoffdaten und das E-Learning System Thermopr@ctice

Kretzschmar, Hans-Joachim, Stöcker, Ines, Kunick, Matthias, Jähne, Ines 27 May 2010 (has links) (PDF)
Das Lernsystem Thermopr@ctice stellt eine internetgestützte Lernumgebung für das Berechnen von Übungsaufgaben mit dem Computer-Algebrasystem Mathcad dar. Die veränderte Arbeitsweise des Lernenden besteht darin, das herkömmliche Arbeitsblatt durch den Mathcad-Arbeitsbildschirm zu ersetzen und die Aufgabenlösung unmittelbar auf diesem zu erledigen. Dem Lernenden werden die Übungsaufgaben – hier im Fach Technische Thermodynamik – in individuellen Varianten und mit individuellen Zahlenwerten im Mathcad-Format über Internet bereitgestellt. Die Lösung erfolgt in betreuten Übungen oder am heimischen PC. Für die Lösung benötigte Stoffwerte können der Stoffwertsammlung im Internet entnommen bzw. mit Programmbibliotheken, die an Mathcad angeschlossen sind, berechnet werden. Ergänzend wird eine Formelsammlung angeboten, aus der wichtige Formeln auf den Arbeitsbildschirm gezogen werden können. Nach der Berechnung jeder Teilaufgabe sendet der Lernende das Ergebnis an Thermopr@ctice. Im Fehlerfall werden Zwischenergebnisse angefordert. Realisiert wird die Lernumgebung über PHP-Skripte in Verbindung mit einer MySQL-Datenbank. Durch das Lernsystem werden die Studierenden an moderne Arbeitsweisen unter Nutzung eines Computer-Algebrasystems und fachbezogener Programmbibliotheken herangeführt. Da das System zum Selbststudium konzipiert ist, eignet es sich auch für die Weiterbildung und das Fernstudium. Es kann auf alle Lehrfächer übertragen werden, in denen die Aneignung oder Festigung von Wissen über das Berechnen von Übungsaufgaben erfolgt. Thermopr@ctice wurde im Rahmen des Verbundprojektes „Bildungsportal Sachsen“ des Sächsischen Staatsministeriums für Wissenschaft und Kunst entwickelt. Neue Technologien in der Energietechnik, insbesondere Verfahren mit CO2-Abscheidung, bedingen veränderte Arbeitsfluide. Neben reinen Stoffen kommen zunehmend fluide Stoffgemische zum Einsatz, deren thermodynamische Eigenschaften berechnet werden müssen. Dies betrifft feuchte Verbrennungsgasgemische einschließlich CO2/H2O-Gemische sowie feuchte Luft, auch bei hohen Drücken. Daneben sind die Eigenschaften von gasförmigen, flüssigen und festem Kohlendioxid und Mischungen mit verbliebenen Gasen zu berechnen. Auf Grund der Nutzung von Abwärme sind Absorptionskältemaschinen mit Ammoniak-Wasser-Gemischen und Wasser- Lithiumbromid-Gemischen nach wie vor von Interesse. Die Eigenschaften von Ammoniak/Wasser- Gemischen werden auch für die Berechnung des Kalina-Prozesses benötigt. Zur Konzipierung von ORC-Prozessen müssen die Eigenschaften von Silikonölen und Kohlenwasserstoffen berechenbar sein. Für die Optimierung von fortschrittlichen Dampfkraftwerken sind extrem schnelle Algorithmen für die Berechnung der thermodynamischen Eigenschaften von Wasser und Wasserdampf Voraussetzung. Die weltweit an Bedeutung gewinnende Meerwasserentsalzung bedingt eine immer genauere Modellierung der Verfahren, wofür die Eigenschaften von Meerwasser berechenbar sein müssen. Für die Berechnung solcher Prozesse wurden benutzerfreundliche Programmbibliotheken zur Ermittlung der thermodynamischen Zustandsgrößen einschl. Umkehrfunktionen und Transporteigenschaften der Arbeitsfluide erarbeitet. Zur komfortablen Nutzung der Stoffwert-Bibliotheken steht das Add-On FluidMAT für Mathcad® zur Verfügung. Versionen für Studierende der wichtigsten Programme sind verfügbar.
3

Auswirkungen der Kopplung von Strom- und Wärmemarkt auf die künftige Integration der erneuerbaren Energien und die CO2-Emissionen in Deutschland

Deac, Gerda 20 November 2020 (has links)
Die Dissertationsschrift untersucht die Interaktion zwischen Strom- und Wärmemarkt mit einem besonderen Fokus auf Wärmepumpen und Wärmenetzen. Vor dem Hintergrund des steigenden Ausbaus erneuerbarer Energien und der langfristigen Klimaziele stellt sich dabei die Frage der Wirkung, welche die Kopplung von Strom- und Wärmemarkt auf die Reduktion der CO2-Emissionen, die Energiesystemkosten und die Integration der erneuerbaren Energien hat. Zur Beantwortung der Forschungsfrage wird das lineare Optimierungsmodell Enertile um zwei Wärmemodule zur Berücksichtigung von Wärmepumpen und Wärmenetzen erweitert. Im Unterschied zu anderen Modellen wird in der Implementierung für diese Arbeit der Ausbau und der Einsatz der erneuerbaren Energien, der KWK und der weiteren fossilen Kraftwerkskapazitäten gleichzeitig optimiert, wodurch eine Analyse der Wechselwirkungen zwischen dem Ausbau erneuerbarer Energien und der Kopplung von Strom- und Wärmemarkt möglich ist. Die in dieser Arbeit vorgenommene modellgestützte Analyse zeigt die große Bedeutung der Interaktion zwischen Strom- und Wärmemarkt. Im Rahmen einer langfristigen Dekarbonisierung der Energieversorgung durch einen verstärkten Ausbau von erneuerbaren Energien ergeben sich sowohl Chancen als auch Herausforderungen für die Interaktion zwischen Strom- und Wärmemarkt. Die Modellierung der Wärmepumpen zeigt für den gesamten Zeitraum ab 2020 deutlich geringere spezifische CO2-Emissionen gegenüber der Wärmeerzeugung in modernen Gasbrennwertkesseln. Die Ergebnisse zeigen auch, dass bivalente Systeme – die kombinierte Nutzung verschiedener Wärmeerzeugungstechnologien wie beispielsweise KWK, Gasheizkessel und Elektroheizkessel – vor dem Hintergrund der Umstrukturierung des Stromsektors eine wichtige Rolle spielen. Langfristig stellt die flexible Wärmebereistellung durch elektrische Heizungstechnologien insbesondere bei hohen Anteilen erneuerbarer Energien eine kostengünstige und CO2-arme Alternative zur fossilen Wärmeerzeugung dar.:1 Einleitung 1 1.1 Ausgangslage 1 1.2 Problemstellung 3 1.3 Zielsetzung und Vorgehen 4 2 Rahmenbedingungen auf dem Strom- und Wärmemarkt in Deutschland 7 2.1 Rahmenbedingungen auf dem Strommarkt 7 2.2 Rahmenbedingungen auf dem Wärmemarkt 12 2.3 Schlussfolgerungen für diese Arbeit 16 3 Modellierung der Interaktionen von Strom- und Wärmemarkt 17 3.1 Stand der Forschung und Anforderungen an das Modell 17 3.2 Modelle zur Untersuchung von Strom- und Wärmemarkt 18 3.3 Stromsystemoptimierung Enertile 21 3.3.1 Eingangsdaten und Ergebnisse 23 3.3.2 Problemformulierung 24 3.4 Modellerweiterung zur Integration des Wärmemarktes 26 3.4.1 Wärmepumpen 26 3.4.2 Wärmenetze 32 4 Unsicherheiten in Energiesystemmodellen 42 4.1 Unsicherheiten im Rahmen dieser Arbeit 42 4.2 Methoden zum Umgang mit Unsicherheiten in Energiesystemmodellen 43 4.3 Szenarienentwicklung und Sensitivitäten 47 5 Definition von Szenarien zur Analyse der Wechselwirkungen zwischen Strom- und Wärmemarkt 50 5.1 Szenarienübersicht 50 5.2 Zentrale Annahmen 51 5.3 Strommarkt 56 5.3.1 Erneuerbare Energien 56 5.3.2 Konventionelle Kraftwerke 57 5.3.3 Stromnachfrage 59 5.4 Wärmenetze 59 5.5 Wärmepumpen 63 5.6 Sensitivitäten 65 5.7 Kritische Reflexion der Annahmen 66 6 Modellgestützte Analyse der Wechselwirkungen zwischen Strom- und Wärmemarkt 68 6.1 Einfluss auf die CO2-Emissionen 69 6.1.1 Strommarkt 69 6.1.2 Wärmepumpen 72 6.1.3 Wärmenetze 77 6.2 Entwicklung des Kraftwerksparks und des Erzeugungsmixes 82 6.2.1 Strommarkt 82 6.2.2 Wärmepumpen 95 6.2.3 Wärmenetze 106 6.2.4 Integration erneuerbarer Energien auf dem Strommarkt 128 6.3 Änderung der Systemkosten durch die Kopplung von Strom- und Wärmemarkt 131 6.3.1 Kosten der Stromerzeugung 132 6.3.2 Kosten der Wärmeerzeugung in Wärmepumpen 134 6.3.3 Kosten der Wärmeerzeugung in Wärmenetze 136 6.4 Zusammenfassung der Szenarienanalyse 140 6.4.1 Einfluss der Kopplung von Strom- und Wärmemarkt bei ambitionierten Klimaschutz 140 6.4.2 Einfluss der Kopplung von Strom- und Wärmemarkt bei mäßigem Klimaschutz 141 7 Sensitivitäten 142 7.1 Stabile Brennstoffpreise 142 7.2 Potentiale von erneuerbaren Energien 145 7.3 Isolierte Effekte von Elektroheizkesseln und KWK 148 7.3.1 Keine KWK 148 7.3.2 Keine Elektroheizkessel 150 7.4 Hohe Flexibilität der Wärmepumpen 151 7.5 Zusammenfassung Sensitivitäten 152 8 Zusammenfassung 154 8.1 Motivation und Forschungsfrage 154 8.2 Methodisches Vorgehen 154 8.3 Ergebnisse 155 8.4 Schlussfolgerungen und kritische Reflektion 156 8.4.1 Szenarienanalyse 156 8.4.2 Methodik 157 8.4.3 Ausblick 159
4

Mathcad-Bibliotheken für thermodynamische Stoffdaten und das E-Learning System Thermopr@ctice

Kretzschmar, Hans-Joachim, Stöcker, Ines, Kunick, Matthias, Jähne, Ines 27 May 2010 (has links)
Das Lernsystem Thermopr@ctice stellt eine internetgestützte Lernumgebung für das Berechnen von Übungsaufgaben mit dem Computer-Algebrasystem Mathcad dar. Die veränderte Arbeitsweise des Lernenden besteht darin, das herkömmliche Arbeitsblatt durch den Mathcad-Arbeitsbildschirm zu ersetzen und die Aufgabenlösung unmittelbar auf diesem zu erledigen. Dem Lernenden werden die Übungsaufgaben – hier im Fach Technische Thermodynamik – in individuellen Varianten und mit individuellen Zahlenwerten im Mathcad-Format über Internet bereitgestellt. Die Lösung erfolgt in betreuten Übungen oder am heimischen PC. Für die Lösung benötigte Stoffwerte können der Stoffwertsammlung im Internet entnommen bzw. mit Programmbibliotheken, die an Mathcad angeschlossen sind, berechnet werden. Ergänzend wird eine Formelsammlung angeboten, aus der wichtige Formeln auf den Arbeitsbildschirm gezogen werden können. Nach der Berechnung jeder Teilaufgabe sendet der Lernende das Ergebnis an Thermopr@ctice. Im Fehlerfall werden Zwischenergebnisse angefordert. Realisiert wird die Lernumgebung über PHP-Skripte in Verbindung mit einer MySQL-Datenbank. Durch das Lernsystem werden die Studierenden an moderne Arbeitsweisen unter Nutzung eines Computer-Algebrasystems und fachbezogener Programmbibliotheken herangeführt. Da das System zum Selbststudium konzipiert ist, eignet es sich auch für die Weiterbildung und das Fernstudium. Es kann auf alle Lehrfächer übertragen werden, in denen die Aneignung oder Festigung von Wissen über das Berechnen von Übungsaufgaben erfolgt. Thermopr@ctice wurde im Rahmen des Verbundprojektes „Bildungsportal Sachsen“ des Sächsischen Staatsministeriums für Wissenschaft und Kunst entwickelt. Neue Technologien in der Energietechnik, insbesondere Verfahren mit CO2-Abscheidung, bedingen veränderte Arbeitsfluide. Neben reinen Stoffen kommen zunehmend fluide Stoffgemische zum Einsatz, deren thermodynamische Eigenschaften berechnet werden müssen. Dies betrifft feuchte Verbrennungsgasgemische einschließlich CO2/H2O-Gemische sowie feuchte Luft, auch bei hohen Drücken. Daneben sind die Eigenschaften von gasförmigen, flüssigen und festem Kohlendioxid und Mischungen mit verbliebenen Gasen zu berechnen. Auf Grund der Nutzung von Abwärme sind Absorptionskältemaschinen mit Ammoniak-Wasser-Gemischen und Wasser- Lithiumbromid-Gemischen nach wie vor von Interesse. Die Eigenschaften von Ammoniak/Wasser- Gemischen werden auch für die Berechnung des Kalina-Prozesses benötigt. Zur Konzipierung von ORC-Prozessen müssen die Eigenschaften von Silikonölen und Kohlenwasserstoffen berechenbar sein. Für die Optimierung von fortschrittlichen Dampfkraftwerken sind extrem schnelle Algorithmen für die Berechnung der thermodynamischen Eigenschaften von Wasser und Wasserdampf Voraussetzung. Die weltweit an Bedeutung gewinnende Meerwasserentsalzung bedingt eine immer genauere Modellierung der Verfahren, wofür die Eigenschaften von Meerwasser berechenbar sein müssen. Für die Berechnung solcher Prozesse wurden benutzerfreundliche Programmbibliotheken zur Ermittlung der thermodynamischen Zustandsgrößen einschl. Umkehrfunktionen und Transporteigenschaften der Arbeitsfluide erarbeitet. Zur komfortablen Nutzung der Stoffwert-Bibliotheken steht das Add-On FluidMAT für Mathcad® zur Verfügung. Versionen für Studierende der wichtigsten Programme sind verfügbar.

Page generated in 0.0236 seconds