• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the large-scale structure in the development of turbulent wall jets

Hall, Joseph Warren. Ewing, Daniel. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: Daniel Ewing. Includes bibliographical references (p. 139-146).
2

Development of three-dimensional turbulent wall jets /

Sun, Huongguang. Ewing, Daniel. January 2002 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Adviser: Daniel Ewing. Includes bibliographical references. Also available via World Wide Web.
3

Development of three-dimensional turbulent wall jets /

Sun, Huongguang. Ewing, Daniel. January 2002 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Adviser: Daniel Ewing. Includes bibliographical references. Also available via World Wide Web.
4

The effect of rectangular obstacles on the diffusion of a wall jet

Setrakian, A. A. S. January 1988 (has links)
No description available.
5

Experimental and Numerical Investigation of Turbulent Heat Transfer due to Rectangular Impinging Jets

Dogruoz, Mehmet Baris January 2005 (has links)
Due to their efficient heat and mass transfer potential, impinging jets have received attention in various applications. Heat transfer and flow characteristics of rectangular turbulent impinging jets issued from a 24:1 aspect ratio and 24:1 contraction ratio nozzle were investigated experimentally and numerically. In the heat transfer measurements; a thin stainless-steel foil was utilized to obtain iso-flux boundary conditions on the impingement surface. The target plate was free to translate in the lateral direction and the heat transfer distributions were determined at 0 ≤ x/W ≤ 20 with the micro-thermocouples placed underneath the foil. The measurements were conducted for Re(j) = 8900 − 48600 at nozzle-to-target spacing of 0.5 ≤ H/W ≤ 12.0. Both semi and fully confined jets were investigated. Heat transfer coefficients at Re(j) = 28100, 36800, 45600 and H/W = 4.0 were determined by using adiabatic-wall temperatures and the distributions were compared with those of the wall shear stress. Off-center peaks were observed at high Re(j) and low H/W. Since the wall distributions are susceptible to nozzle-exit conditions, velocity and turbulence profiles at the nozzle-exit were measured for the velocity range of interest. Additionally, near-wall mean velocity and turbulence profiles were determined at Re(j) = 21500 and 36800 at H/W = 4.0 to have a better understanding of the secondary peaks in the wall distributions. Numerical computations were performed by using several different turbulence models (k − ω, k − ε, V 2F and Reynolds stress models). In wall-bounded turbulent flows, near-wall modeling is crucial. Therefore, the turbulence models eliminating wall functions such as the k − ω and V 2F models may be superior for modeling impingement flows. The numerical results showed reasonable agreement with the experimental data for local heat transfer and skin friction coefficient distributions. The occurrence of the secondary peaks was predicted by the k − ω and V 2F models, and for a few cases with the low-Re-k − ε models. Near-wall measurements along with the computed profiles were used to describe the “secondary peak” phenomena. It was shown that the increase in turbulence production in the wall-streamwise direction enhances turbulent momentum and heat transport in the wall-normal direction which lead to secondary peaks in the wall distributions. The possibility of improving surface heat transfer with fully-developed jets was also explored numerically as a case study.
6

A Computational Analysis of Bio-Inspired Modified Boundary Layers for Acoustic Pressure Shielding in A Turbulent Wall Jet

Unknown Date (has links)
Surface pressure fluctuations developed by turbulent flow within a boundary layer is a major cause of flow noise from a body and an issue which reveals itself over a wide range of engineering applications. Modified boundary layers (MBLs) inspired by the down coat of an owl’s wing has shown to reduce the acoustic effects caused by flow noise. This thesis investigates the mechanisms that modified boundary layers can provide for reducing the surface pressure fluctuations in a boundary layer. This study analyzes various types of MBLs in a wall jet wind tunnel through computational fluid dynamics and numerical surface pressure spectrum predictions. A novel surface pressure fluctuation spectrum model is developed for use in a wall jet boundary layer and demonstrates high accuracy over a range of Reynolds numbers. Non-dimensional parameters which define the MBL’s geometry and flow environment were found to have a key role in optimizing the acoustic performance. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
7

Wall jet model for ceiling fan applications in broiler houses

Blackwell, Neal Elwood January 1985 (has links)
A model was developed to predict velocity profiles of radial wall jets produced by ceiling fans and flowing over broiler chickens. Broilers were modeled by balloons with paper cylinders simulating the necks. Wall jet data was recorded for 91.5, 83.8 and 71.1 cm radius fans that were rated at 220, 160, and 108 W, respectively. Each fan was suspended 2.44 m above the floor and operated at four speeds. Applications of the model include 1) calculation of optimum design specifications for ceiling fan applications in broiler houses and 2) prediction of data for managerial decisions concerning existing ceiling fan applications. Model inputs are the fan radius and the characteristic velocity. The characteristic velocity was defined as the maximum air velocity 30 cm below the blades. The wall jet model was interfaced with a broiler growth model for heat stressed broilers to simulate summer conditions and to predict the additional weight gain due to the wall jet. Also, the wall jet was developed to predict the air velocity near the litter to aid litter management decisions. Ceiling fan applications in the southeast, used in conjunction with the summer model, have the potential of increasing summer broiler production by 10% and decreasing fan energy consumption by 8 to 12%. The model may be used to optimize the benefit to the producer. / Ph. D.
8

Experimental study of tailwater level and asymmetry ratio effects on three-dimensional offset jets

Durand, Zacharie 27 August 2014 (has links)
Supercritical fluid jets provide a complex flow pattern and are present in many engineering applications. To date, studies have focused on wall jets, free jets, and two-dimensional offset jets. As a result, our understanding of three-dimensional offset jets is lacking. A deeper understanding of three-dimensional offset jets is important as they are seen in many engineering applications. Understanding the flow patterns of three-dimensional offset jets will aid hydraulic engineers to reduce anthropogenic effects when designing new and rehabilitating older hydraulic structures. The purpose of this study was to evaluate the effects of tailwater level and asymmetry ratio on three-dimensional offset jets. A physical model was constructed and three sets of experiments were conducted. Each set of experiments evaluated the effects of the Reynolds number, tailwater level, or asymmetry ratio. Velocity measurements were taken with an acoustic Doppler velocimeter. The acoustic Doppler velocimeter measured all three components of velocity which allowed the calculation of all six components of Reynolds shear stresses and ten components of triple velocity correlation. The effects of Reynolds number, tailwater level, and asymmetry ratio on streamwise flow development, distributions of mean velocities, and distribution of turbulence statistics were evaluated. Reynolds number effects were found to be insignificant at Reynolds number greater than 53,000. Two different trends were observed in the behavior of three-dimensional offset jets at different tailwater levels. At low tailwater levels the jet will not reattach to the channel bottom as it does at higher tailwater levels. Increasing the asymmetry ratio of an offset jet will make the jet curve towards the channel wall and bottom faster. Once reattached to the wall the velocity decay rate is greatly reduced. The results found in this study will be useful to a hydraulic engineer designing new or rehabilitating older hydraulic structures which have flow characteristics similar to that of three-dimensional offset jets. The data acquired during this study adds to the available data usable for calibration and validation of turbulence models. All three components of velocity were measured simultaneously which allowed to calculation of the six Reynolds shear stresses and ten triple velocity correlation terms. All velocities and turbulence statistics in this study were measured simultaneously which provides a data set that has rarely been seen before.
9

Numerical Modeling of Thermal/Saline Discharges in Coastal Waters

Kheirkhah Gildeh, Hossein 07 June 2013 (has links)
Liquid waste discharged from industrial outfalls is categorized into two major classes based on their density. One type is the effluent that has a higher density than that of the ambient water body. In this case, the discharged effluent has a tendency to sink as a negatively buoyant jet. The second type is the effluent that has a lower density than that of the ambient water body and is hence defined as a (positively) buoyant jet that causes the effluent to rise. Negatively/Positively buoyant jets are found in various civil and environmental engineering projects: discharges of desalination plants, discharges of cooling water from nuclear power plants turbines, mixing chambers, etc. This thesis investigated the mixing and dispersion characteristics of such jets numerically. In this thesis, mixing behavior of these jets is studied using a finite volume model (OpenFOAM). Various turbulence models have been applied in the numerical model to assess the accuracy of turbulence models in predicting the effluent discharges in submerged outfalls. Four Linear Eddy Viscosity Models (LEVMs) are used in the positively buoyant wall jet model for discharging of heated waste including: standard k-ε, RNG k-ε, realizable k-ε and SST k-ω turbulence models. It was found that RNG k-ε, and realizable k-ε turbulence models performed better among the four models chosen. Then, in the next step, numerical simulations of 30˚ and 45˚ inclined dense turbulent jets in stationary ambient water have been conducted. These two angles are examined in this study due to lower terminal rise height for 30˚ and 45˚, which is very important for discharges of effluent in shallow waters compared to higher angles. Five Reynolds-Averaged Navier-Stokes (RANS) turbulence models are applied to evaluate the accuracy of CFD predictions. These models include two LEVMs: RNG k-ε, and realizable k-ε; one Nonlinear Eddy Viscosity Model (NLEVM): Nonlinear k-ε; and two Reynolds Stress Models (RSMs): LRR and Launder-Gibson. It has been observed that the LRR turbulence model as well as the realizable k-ε model predict the flow more accurately among the various turbulence models studied herein.
10

Numerical Modeling of Thermal/Saline Discharges in Coastal Waters

Kheirkhah Gildeh, Hossein January 2013 (has links)
Liquid waste discharged from industrial outfalls is categorized into two major classes based on their density. One type is the effluent that has a higher density than that of the ambient water body. In this case, the discharged effluent has a tendency to sink as a negatively buoyant jet. The second type is the effluent that has a lower density than that of the ambient water body and is hence defined as a (positively) buoyant jet that causes the effluent to rise. Negatively/Positively buoyant jets are found in various civil and environmental engineering projects: discharges of desalination plants, discharges of cooling water from nuclear power plants turbines, mixing chambers, etc. This thesis investigated the mixing and dispersion characteristics of such jets numerically. In this thesis, mixing behavior of these jets is studied using a finite volume model (OpenFOAM). Various turbulence models have been applied in the numerical model to assess the accuracy of turbulence models in predicting the effluent discharges in submerged outfalls. Four Linear Eddy Viscosity Models (LEVMs) are used in the positively buoyant wall jet model for discharging of heated waste including: standard k-ε, RNG k-ε, realizable k-ε and SST k-ω turbulence models. It was found that RNG k-ε, and realizable k-ε turbulence models performed better among the four models chosen. Then, in the next step, numerical simulations of 30˚ and 45˚ inclined dense turbulent jets in stationary ambient water have been conducted. These two angles are examined in this study due to lower terminal rise height for 30˚ and 45˚, which is very important for discharges of effluent in shallow waters compared to higher angles. Five Reynolds-Averaged Navier-Stokes (RANS) turbulence models are applied to evaluate the accuracy of CFD predictions. These models include two LEVMs: RNG k-ε, and realizable k-ε; one Nonlinear Eddy Viscosity Model (NLEVM): Nonlinear k-ε; and two Reynolds Stress Models (RSMs): LRR and Launder-Gibson. It has been observed that the LRR turbulence model as well as the realizable k-ε model predict the flow more accurately among the various turbulence models studied herein.

Page generated in 0.2205 seconds