• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground movements due to excavation in clay : physical and analytical models

Lam, Sze Yue January 2010 (has links)
In view of the recent catastrophes associated with deep excavations, there is an urgent need to provide vital guidelines on the design of the construction process. To develop a simple tool for predicting ground deformation around a deep excavation construction for preliminary design and decision-making purposes, small scale centrifuge models were made to observe the complicated mechanisms involved. A newly developed actuation system, with which the construction sequences ofpropping could be implemented, was developed, the new procedures were proven to give more realistic initial ground conditions before excavation with minimal development of pre-excavation bending moment and wall displacement. Incremental wall deformation profiles generally followed the O'Rourke cosine bulge equation and a new deformation mechanism was proposed with respect to wall toe fixity and excavation geometry. Validation of the conservation energy principle was carried out for the undrained excavation process. The total loss of potential energy was shown to be balanced by the total work done in shearing and the total elastic energy stored in structures with an error term of 30%. An improved mobilizable strength method (MSD) method using observed mechanistic deformation patterns was introduced to calculate the displacement profile of a multi-propped undrained excavation in soft clay. The incremental loss in potential energy associated with the formation of settlement toughs was balanced by the sum of incremental storage of elastic energy and the energy dissipation in shearing. A reasonable agreement was found between the prediction by the MSD method and the finite element results computed by an advanced MIT-E3 model for wall displacements, ground settlement, base heave and bending moment on fixed base walls. For cases of excavations supported by floating walls, the effect of embedded wall length, depth of the stiff layer, bending stiffness of wall and excavation geometry and over-consolidation ratio of soils were found to have a influence on the maximum wall deflection. In general, the predictions fell within 30% of the finite element computed results. A new chart Ψ versus normalized system stiffness was used to demonstrate that MSD could correctly capture the trend of wall displacements increasing with the ratio ofexcavation depth to depth of stiff layer, which could be controlled by increasing wall stiffness for very stiff wall system only. The incorporation of a simple parabolic curvequantifying small strain stiffness of soil was proven to be essential to good ground movement predictions. A new dimensionless group has been defined using the MSD concepts to analyze 110 cases of excavation. The new database can now be used to investigate the relationship between structural response ratio S and soil-structure stiffness ratio R where this is shown on log-log axes to capture the enormous range of wall stiffness between sheet-piles and thick diaphragm walls. Wall stiffness was found to have a negligible influence on the magnitude of the wall bulging displacements for deep excavation supported by fixed-based wall with stiffness ranging from sheet pile walls to ordinary reinforced concrete diaphragm walls, whereas excavations supported by floating walls were found to be influenced by wall stiffness due to the difference in deformation mechanisms.
2

Lateral Stiffness Of Unstiffened Steel Plate Shear Wall Systems

Atasoy, Mehmet 01 January 2008 (has links) (PDF)
Finite element method and strip method are two widely used techniques for analyzing steel plate shear wall (SPSW) systems. Past research mostly focused on the prediction of lateral load capacity of these systems using these numerical methods. Apart from the lateral load carrying capacity, the lateral stiffness of the wall system needs to be determined for a satisfactory design. Lateral displacements and the fundamental natural frequency of the SPSW system are directly influenced by the lateral stiffness. In this study the accuracy of the finite element method and strip method of analysis are assessed by making comparisons with experimental findings. Comparisons revealed that both methods provide in general solutions with acceptable accuracy. While both methods offer acceptable solutions sophisticated computer models need to be generated. In this study two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory is modified in the light of parametric studies performed on restrained thin plates under pure shear and pure bending. The second one is a computer method based on truss analogy. Stiffness predictions using the two alternative methods are found to compare well with the experimental findings. In addition, lateral stiffness predictions of the alternate methods are compared against the solutions provided using finite element and strip method of analysis for a class of test structures. These comparisons revealed that the developed methods provide estimates with acceptable accuracy and are simpler than the traditional analysis techniques.
3

Lateral load response of Cikarang brick wall structures : an experimental study

Basoenondo, Essy Arijoeni January 2008 (has links)
Despite their poor performance, non-standard clay bricks are commonly used in construction of low-rise buildings and rural houses in Indonesia. These clay bricks are produced traditionally in home industries. Indonesia is located in an active seismic region and many masonry buildings were badly damaged or collapsed during recent earthquakes. Such buildings are classified as non-engineered structures as they are built without using any proper design standard. Lateral load response of un-reinforced masonry walls is investigated in this research project, with the aim of better understanding the behaviour of these masonry walls using low quality local bricks. A comprehensive experimental program was undertaken with masonry wall elements of 600 mm x 600 mm x 110 mm constructed from local bricks from Cikarang in West Java - Indonesia. Wall specimens were constructed and tested under a combination of constant vertical compression load and increasing horizontal or lateral in-plane loads, of monotonic, repeated and cyclical nature. The vertical compressive loading was limited to 4% of maximum brick compressive strength. Masonry mortar mix used to construct the specimens was prepared according to Indonesian National Standard. Three different types of masonry wall panels were considered, (i) (normal) brick masonry walls, (ii) surface mortared brick masonry walls and (iii) comforted surface mortared brick masonry walls. The results indicated that the lateral load bearing capacity of masonry wall is usually lower than that of mortared and comforted walls. Despite this, the lateral load capacity under cyclic loads decreased 50 % of the average capacity of the walls under monotonic and repeated lateral loads. Using the results from the experimental program, a simplified model for the equivalent diagonal spring stiffness of local clay brick walls was developed. This stiffness model derived from experimental results in then used to simplify the structural analysis of clay brick wall panels in Indonesia. The design guideline for brick masonry houses and low-rise buildings in six Indonesian seismic zones was developed, as a contribution towards the development of design guidance for constructing brick masonry houses in Indonesia.
4

Study on the Application of Shear-wave Elastography to Thin-layered Media and Tubular Structure: Finite-element Analysis and Experiment Verification / Shear-wave Elastography法の薄板状と円筒状の媒質への適用に関する研究:有限要素解析と実験的検証

Jang, Jun-keun 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第19970号 / 人健博第38号 / 新制||人健||3(附属図書館) / 33066 / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 杉本 直三, 教授 精山 明敏, 教授 黒田 知宏 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
5

A Model Study On The Effects Of Wall Stiffness And Surcharge On Dynamic Lateral Earth Pressures

Cilingir, Ulas 01 July 2005 (has links) (PDF)
A model study on laterally braced sheet pile walls retaining cohesionless soil was conducted using 1-g shaking table. Lateral dynamic earth pressures, backfill accelerations and dynamic displacement of walls were measured. Input accelerations were kept between 0.03g to 0.27g. A data acquisition system consisting of dynamic pressure transducers, accelerometers, displacement transducer, signal conditioning board and a data acquisition card compatible with a personal computer was used during the study. Three different walls with thicknesses of 6.6, 3.2 and 2.0 mm were used in order to investigate the effects of changing wall stiffness value on lateral seismic pressures developed on the wall. In addition to that, steel blocks were placed on top of the backfill in order to simulate a surcharge effect of 1.57 kPa to 3.14 kPa during shaking. Amplification of input acceleration, incremental seismic lateral thrusts and corresponding maximum dynamic pressures, application point of the resultant, effect of stiffness and surcharge on maximum seismic lateral thrust and dynamic wall deflections were calculated by processing raw data stored. The results were compared to previous model studies and some analytical methods available.

Page generated in 0.0816 seconds