• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloning and Characterization of rcs5, Spot Blotch Resistance Gene and Pathogen Induced Nec3 Gene Involved in Programmed Cell Death in Barley

Ameen, Gazala January 2019 (has links)
Upon sensing pathogens, plants initiating defense responses typically resulting in programmed cell death (PCD). PCD effectively subdues biotrophic pathogens but is hijacked by necrotrophs that colonize the resulting dead tissues. We showed that barley wall associated kinase (WAK) genes, underlying the rcs5 QTL, are manipulated by the necrotrophic fungal pathogen Bipolaris sorokiniana to cause spot blotch disease. The rcs5 genetic interval was delimited to ~0.23 cM, representing an ~234 kb genomic region containing four WAK genes, designated HvWak2, Sbs1, Sbs2, and HvWak5. Post-transcriptional gene silencing of Sbs1&2 in the susceptible barley cultivars Steptoe and Harrington resulted in resistance, suggesting a dominant susceptibility function. Sbs1&2 expression is undetectable in barley prior to pathogen challenge; however, specific upregulation of Sbs1&2 occurred in the susceptible lines post inoculation. Promotor sequence polymorphisms were identified in the allele analysis of Sbs1&2 from eight resistant and two susceptible barley lines, which supported the possible role of promotor regulation by virulent isolates contributing to susceptibility. Apoplastic wash fluids from virulent isolates induced Sbs1expression, suggesting regulation by an apoplastic-secreted effector. Thus, the Sbs1&2 genes are the first susceptibility/resistance genes that confer resistance against spot blotch, a disease that threatens barley and wheat production worldwide. The nec3 mutants of barley are hyper-susceptible to many necrotrophs and show distinctive cream to orange necrotic lesions that are induced by infection, representing aberrant PCD. The γ- irradiation induced necrotic mutant, nec3-γ1 (Bowman) was confirmed as a nec3 mutant by allelism tests. The F2 progeny of a cross of nec3 x Quest inoculated with B. sorokiniana segregated as a single recessive gene fitting a 3 WT: 1 mutant ratio. The homozygous F2 mutant progeny were genotyped with four SSR and 25 SNP markers at nec3 locus on chromosome 6H, a physical region spanning ~ 16.96 Mb containing 91 high and low confidence annotated genes. Exome capture sequencing of nec3 mutants failed to identify a candidate gene, however, RNAseq analysis identified two candidates in the nec3 region with >three-fold downregulation. We hypothesize that the underlying aberrant PCD mechanism in the nec3 barley mutant facilitates extreme susceptibility to multiple adapted fungal pathogens of barley.

Page generated in 0.0812 seconds