• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Empirical Study of CSS Code Smells in Web Frameworks

Bleisch, Tobias Paul 01 March 2018 (has links)
Cascading Style Sheets (CSS) has become essential to front-end web development for the specification of style. But despite its simple syntax and the theoretical advantages attained through the separation of style from content and behavior, CSS authoring today is regarded as a complex task. As a result, developers are increasingly turning to CSS preprocessor languages and web frameworks to aid in development. However, previous studies show that even highly popular websites which are known to be developed with web frameworks contain CSS code smells such as duplicated rules and hard-coded values. Such code smells have the potential to cause adverse effects on websites and complicate maintenance. It is therefore important to investigate whether web frameworks may be encouraging the introduction of CSS code smells into websites. In this thesis, we investigate the prevalence of CSS code smells in websites built with different web frameworks and attempt to recognize a pattern of CSS behavior in these frameworks. We collect a dataset of several hundred websites produced by each of 19 different frameworks, collect code smells and other metrics present in the CSS code of each website, train a classifier to predict which framework the website was built with, and perform various clustering tasks to gain insight into the correlations between code smells. Our results show that CSS code smells are highly prevalent in websites built with web frameworks, we achieve an accuracy of 39% in correctly classifying the frameworks based on CSS code smells and metrics, and we find interesting correlations between code smells.

Page generated in 0.0291 seconds