• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

曲線相似性之檢定 / A test for curve similarity

程毓婷, Cheng, Yu Ting Unknown Date (has links)
這篇論文提出了比較兩組資料曲線在對齊後是否有相似外形的分析方法。在 functional data analysis 中,可能會有多條曲線具有相同外形但是時間轉換卻不一樣的情形。這篇論文檢定了兩組資料曲線在對齊後是否有相似外形,論文中並提出一個檢定統計量,再藉由模擬得到檢定的 p-value 和檢定力。 / This thesis proposed an analysis comparing whether the shape function for two groups of curves are similar after alignment. In functional data analysis, it is common to have curves of the same pattern but with variation in time. The common pattern can be characterized by a shape function. The problem considered in this thesis is to test whether the shape functions for two groups of curves are essentially the same. A test statistic is proposed and the p-value is obtained via simulation. Simulation results indicate that the test performs well.
2

Formulação do problema da torção uniforme em barras de seção transversal maciça. / Formulation of the uniform torsion problem in solid section bars.

Silva, Henrique Furia 17 May 2005 (has links)
O escopo do trabalho é estudar o problema da torção uniforme em barras de seção maciça e resolvê-lo analiticamente para obter o momento de inércia à torção da seção transversal e os deslocamentos ao longo de toda a barra. Este trabalho foi desenvolvido no contexto da Teoria da Elasticidade, utilizando o método semi-inverso para determinar as equações de Saint-Venant para a torção uniforme. As seções em forma de elipse e triângulo eqüilátero foram resolvidas utilizando a função de tensão de Prandtl, a função empenamento e a sua conjugada harmônica. A seção retangular foi resolvida utilizando as funções empenamento e de Prandtl desenvolvidas em séries infinitas. Foi desenvolvida uma formulação matricial utilizando o Método de Galerkin para resolver problemas que não possuem solução fechada. / The main purpose of this essay is to present the issue of the uniform torsion in solid section bars and to solve it analytically to achieve the moment of inertia to the torsion of the transversal section and the displacements throughout the whole bar. This essay was developed in the Elasticity Theory context, using the semi-inverse method to determine the Saint-Venant equations to the uniform torsion. The sections in ellipse and equilateral triangle were solved using the Prandtl stress function, the warping function and its harmonic conjugate. The rectangular section was solved using the warping and the Prandtl functions developed in infinite series. A formulation based on matrixes was developed using the Galerkin method to solve problems that do not have closed solution.
3

Formulação do problema da torção uniforme em barras de seção transversal maciça. / Formulation of the uniform torsion problem in solid section bars.

Henrique Furia Silva 17 May 2005 (has links)
O escopo do trabalho é estudar o problema da torção uniforme em barras de seção maciça e resolvê-lo analiticamente para obter o momento de inércia à torção da seção transversal e os deslocamentos ao longo de toda a barra. Este trabalho foi desenvolvido no contexto da Teoria da Elasticidade, utilizando o método semi-inverso para determinar as equações de Saint-Venant para a torção uniforme. As seções em forma de elipse e triângulo eqüilátero foram resolvidas utilizando a função de tensão de Prandtl, a função empenamento e a sua conjugada harmônica. A seção retangular foi resolvida utilizando as funções empenamento e de Prandtl desenvolvidas em séries infinitas. Foi desenvolvida uma formulação matricial utilizando o Método de Galerkin para resolver problemas que não possuem solução fechada. / The main purpose of this essay is to present the issue of the uniform torsion in solid section bars and to solve it analytically to achieve the moment of inertia to the torsion of the transversal section and the displacements throughout the whole bar. This essay was developed in the Elasticity Theory context, using the semi-inverse method to determine the Saint-Venant equations to the uniform torsion. The sections in ellipse and equilateral triangle were solved using the Prandtl stress function, the warping function and its harmonic conjugate. The rectangular section was solved using the warping and the Prandtl functions developed in infinite series. A formulation based on matrixes was developed using the Galerkin method to solve problems that do not have closed solution.

Page generated in 0.0717 seconds