• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EXPERIMENTAL STUDY OF A LOW-FREQUENCY THERMOACOUSTIC DEVICE

Ariana G Martinez (7853045) 25 November 2019 (has links)
An experimental study of a low-frequency transcritical thermoacoustic device has been conducted at Purdue University's Maurice J. Zucrow Laboratories. The purpose of this study was to characterize the thermoacoustic response of transcritical R-218 and asses it's feasibility for energy extraction and waste heat removal. This rig operated as a standing-wave configuration and achieved pressure amplitudes as high as 690 KPa (100 psi) at a temperature difference of 150 K and a bulk pressure of 1.3 P/P<sub>cr </sub>(3.43 MPa). To the author's knowledge, this is the highest ever thermoacoustic pressure amplitude achieved in a non-reacting flow. The thermoacoustic response was characterized by varying temperature difference and bulk pressure parametrically. The effect of resonator length was characterized in a set of tests where resonator length and bulk pressure was varied parametrically at a single temperature difference. Finally, the feasibility for energy extraction was assessed in a set of tests which characterized the ability of the working fluid to pump itself through a recirculation line with check valves. This set of tests showed that the working fluid was able to create self-sustained circulation by inducing a pressure differential across the check valves with the thermoacoustic response. This circulation was induced while still maintaining a significant pressure amplitude, demonstrating promising results as a feasible method for energy extraction and waste heat removal.

Page generated in 0.0773 seconds