• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of nutrient transport and transformations downstream of on-site wastewater disposal facilities

Jiang, Ying 29 August 2011 (has links)
The purpose of this project is to gain an improved understanding of the transformations that occur in the subsurface downstream of on-site wastewater disposal systems and septic systems. These systems are used widely throughout the United States to treat and discharge wastewater effluent. The approach involved the collection of samples from a septic research center in Cape Cod, MA, and analysis of these samples for nitrogen, phosphorus, dissolved oxygen, pH, alkalinity, suspended solids, metals, and other water quality parameters. Inverse modeling was used to compare samples collected upstream and downstream of subsurface “leaching” fields consisting of sand beds. This approach provided a basis to identify key reactions occurring in the subsurface downstream of the discharge. In addition, a reactive transport software package, based on the PHREEQC and Hydrus-1d models, was used to model the transport in these sand beds and identify possible reactions and changes in contaminant concentrations with depth. To understand the implications of the discharges, an additional field study was completed in an area where septic systems have impacts on surface waters. Samples collected from a stream provided an indication of the loads entering the stream as a result of septic system discharges. Combining the results from the modeling with the results of this field investigation provided an approach to estimate the transport of nutrients and other contaminants entering the surface waters from septic system discharges. The results provide a basis for understanding the impacts of septic systems on surface waters, and develop better approaches for reducing the impacts of these discharges.
2

Speciation of arsenic water and sediments from Mokolo and Greate Letaba Rivers, Limpopo Province

Letsoalo, Mokgehle Refiloe January 2017 (has links)
Thesis (M. Sc.(Chemistry)) -- University of Limpopo, 2017. / Great Letaba and Mokolo Rivers are major sources of water for domestic use, agriculture and recreational activities in Limpopo Province, South Africa. These Rivers are predisposed to pollution sources from atmospheric deposition of mine dust, emissions from power stations and burning fuel, return flows from agriculture and municipal wastewater discharges and sewage effluents, which may potentially affect the quality of water and the inhabiting biota. Arsenic (As) is an element of prime concern in aquatic systems exposed to such pollution sources due to its toxicity to humans and aquatic life. The quantification and speciation of As in Mokolo and Great Letaba Rivers is important to assess the current levels and predict future trends in the quality of the two rivers. Speciation of As in water and sediments is crucial since the toxicity depends on its chemical forms. In this study, various analytical approaches were explored to precisely identify and quantify different As species in water and sediment samples collected from Great Letaba and Mokolo Rivers. Sample preparation was carried out with an intensive care to efficiently identify and quantify As species. Identification of each species in the samples was based on matching standard peaks with retention times by simple injection of standards of As species into Hamilton PRP X100 column. The chromatographic separation and determination of As3+, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and As5+ in water and sediment samples were achieved by on-line coupling of high performance liquid chromatography (HPLC) to inductively coupled plasma-mass spectrometry (ICP-MS). A novel extraction method for As species in sediments based on 0.3 M (NH4)2HPO4 and 50 mM EDTA showed no species interconversion during extraction. Baseline separation of four As species was achieved in 12 minutes using gradient elution with 10 mM and 60 mM of NH4NO3 at pH 8.7 as mobile phases. The analytical figures of merits and validation of analytical procedures were assessed and adequate performance and percentage recoveries ranging from 81.1 – 102% for water sample and 73.0 – 92.0% for sediments were achieved. The As species concentration in water and sediment samples were found in the range 0.224 – 7.70 μg/L and 74.0 – 92.0 ng/g, respectively. The DMA was not detected in both water and sediment samples. viii The As content in sediments depends on the solid phase partitioning between inorganic As species and trace elements such as iron (Fe), manganese (Mn) and aluminium (Al). Knowledge of the extent of this partitioning is important to evaluate the distribution and pathways of As in water, aquatic organisms and possible exposure of animals and human beings. Therefore, total concentrations of As, Fe, Mn and Al in water and sediment samples were determined using ICP-MS and inductively coupled plasma–optical emission spectrometry (ICP-OES). The analytical procedures were validated using standard reference materials (SRMs) with percentage recoveries of trace elements ranging 84.0 – 95.6% for water samples and 75.0 – 120% for sediments. The As, Fe, Mn and Al concentrations obtained were further assessed for safe drinking water, irrigation water and for sediments quality about standard guidelines. Moreover, As species concentrations correlated with Fe, Mn and Al and the observed interactions depend on the adsorption capacities between As species and these trace elements. The inorganic species in water samples were also determined by employing off-line mode of solid phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) impregnated branched polyethyleneimine (BPEI) as an adsorbent material. The MWCNTs-BPEI characterised with X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermogravimetric analysis (TGA) techniques indicated successful modification of the nanomaterial. The MWCNTs-BPEI exhibited selective retention of As5+ in the presence of As3+ in water samples with the achieved pre-concentration factor of 23.3. The retained As5+ was then eluted and detected using ICP-MS. A limit of detection (LOD) of 0.0537 μg/L and limit of quantification (LOQ) of 0.179 μg/L were achieved. The obtained percentage recovery of 81.0% validated the SPE procedure for selective retention of As5+. The As5+ concentrations determined after the SPE procedure were found in the range of 0.204 – 7.52 μg/L, which are in good agreement with As5+ results obtained using HPLC-ICP-MS.
3

ASSESSMENT OF WATER USE AND INDIRECT WATER REUSE IN A LARGE SCALE WATERSHED: THE WABASH RIVER

Maria Julia Wiener (9465605) 16 December 2020 (has links)
<p>In the context of climate change, increasing demands for freshwater make it necessary to manage our water resources in a sustainable way and find innovative ways to extend their life. An integrated water management approach needs to consider anthropogenic water use and reuse which represent major components of the current water cycle. In particular, unplanned, or de facto, indirect water reuse occurs in most of the U.S. river systems; however, there is little real-time documentation of it. Despite the fact that there are national and state agencies that systematically collect data on water withdrawals and wastewater discharges, their databases are organized and managed in a way that limits the ability to combine reported water data to perform large scale analysis about water use and indirect reuse. To better document these issues and to demonstrate the utility of such an analysis, I studied the Wabash River Watershed located in the U.S. Midwest. Existing data for freshwater extraction, use, discharge, and river streamflow were collected, curated and reorganized in order to characterize the water use and reuse within the basin. Indirect water reuse was estimated by comparing treated wastewater discharges with stream flows at selected points within the watershed. Results show that during the low flow months of July-October 2007, wastewater discharges into the Wabash River basin contributed 82 to 121% of the stream flow, demonstrating that the level of water use and unplanned reuse is significant. These results suggest that intentional water reuse for consumptive purposes such as landscape or agricultural irrigation could have substantial ecological impacts by diminishing stream flow during vulnerable low flow periods. This research also completed a time series watershed-scale analysis of water use and unplanned indirect reuse for the Wabash River Watershed from 2009 to 2017. Results document the occurrence of indirect water reuse over time, ranging from 3% to 134% in a water-rich area of the U.S. The time series analysis shows that reported data effectively describe the water use trends through nine years, clearly reflecting both anthropogenic and natural events in the watershed, such as the retirement of thermoelectric power plants, and the occurrence of an extreme drought in 2012. Results demonstrate the feasibility and significance of using available water datasets to perform large scale water use analysis, describe limitations encountered in the process, and highlight areas for improvement in water data management.</p>

Page generated in 0.1214 seconds