Spelling suggestions: "subject:"water both heating""
1 |
Design and development of a field deployable heating system for loop mediated isothermal amplification (LAMP) assayNafisa Rafiq (17593527) 11 December 2023 (has links)
<p dir="ltr">Nucleic acid testing has become a prominent method for rapid microbial detection. Unlike polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP) is a simple method of nucleic acid amplification where the reaction can be performed at a constant temperature and the output provided in a colorimetric format. A transparent water bath heater is a desirable instrument to perform the heating and observe the visual results of nucleic acid amplification. However, existing methods of heating the water are not convenient for loading and unloading the nucleic acid samples. Here, we developed a field-deployable water bath heating device—an isothermal heater called IsoHeat for short–which is solely dedicated to performing LAMP reactions and can heat the water up to 85 °C (if needed). Using 3D-printing and LASER-cutting technology, we fabricated different parts of the device and mechanically assembled the parts to develop the entire device. Users can commence the heating by pressing the start button on the screen after entering the target temperature. Subsequently, the device heats up the water bath and maintains the target temperature through a PID algorithm-based control system. We demonstrate that IsoHeat can operate in environmental temperatures ranging from 5-33 °C and it can conduct LAMP reactions in a liquid format as well as in paper-based devices. IsoHeat is more efficient and user-friendly compared to a commercially available immersion-heating device, which is often used to perform LAMP reactions. This newly developed device would be helpful to detect pathogens conveniently in the field (e.g., at the point-of-care for human applications, on farms for plant and animal applications, and in production facilities for food safety applications).</p>
|
Page generated in 0.1115 seconds