• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSMENT OF POTENTIAL IMPACTS TO SUBSURFACE BODIES OF WATER DUE TO UNDERGROUND COAL MINING

Bode-Jimenez, Gabriel 01 January 2017 (has links)
Underground coal mining operations induce ground movements, which may impact overlying hydrogeologic systems. Potential impacts mainly include changes in the hydraulic conductivity of overlying strata, decreasing of the hydraulic head and changes in water flow. The present research quantifies potential hydrogeologic impacts caused by underground mining through modeling of pre- and post-mining hydrogeologic systems. Three-dimensional conceptual hydrogeologic models were constructed with the Processing Modflow for Windows software package (PMWiN). The models are based on an actual case study, but were simplified in terms of geometry and material properties. Water flow was simulated under changing hydrogeologic properties. A number of scenarios were investigated including models with horizontal or inclined topography, featuring an aquifer overlying two longwall panels. The hydrogeologic properties of the models were estimated based on empirical relationships between the post-mining hydraulic conductivity and strain in the overburden. The strain regime in the overburden was estimated using the Surface Deformation Prediction System (SDPS) package, which allows calculation of surface deformations due to underground coal mining. The research focuses on changes in hydraulic heads; results indicate that hydraulic heads may decrease over undermined areas and may rebound as mining ceases. Water infiltration may occur from higher located overburden formations to lower formations due to mining induced changes in hydrogeologic properties.
2

Coupled Hydrological and Microbiological Processes Controlling Denitrification in Constructed Wetlands

Kjellin, Johan January 2007 (has links)
<p>Treatment wetlands play an important role in reducing nitrogen content in wastewater and agricultural run-off water. The main removal process is denitrification and the removal efficiency depends on the hydrological and microbiological features of the wetland, especially in terms of water residence times and denitrification rates. The aim of this thesis was to increase the understanding of the coupled hydrological and microbiological processes regulating the denitrification capacity. This was done by applying a broad spectrum of analyses methods, including tracer experiment, water flow modeling, denitrification rate measurements, and analyses of the microbial community structures. The tracer experiment and flow modeling revealed that the wetland design, especially the vegetation, largely can affect the water residence time distributions in wetlands. In the investigated wetland, vegetation dominated the water flow, explaining 60-80% of the variance in water residence times, whereas basin shape only explained about 10% of the variance, but also mixing phenomena significantly affected the residence times and could considerably delay solutes. Measured potential denitrification rates in the wetland exhibited significant spatial variations, and the variations were best described by concentration of nitrogen in sediments and water residence time. Analyses of the denitrifying bacteria populations indicated that a few key populations dominated and that the community diversity increased with decreasing nutrient levels and increasing water residence times. Moreover, it was found that denitrification rates in terms of Menten and first order kinetics can be evaluated by fitting a mathematical expression, considering denitrification and other nitrogen transforming processes to measured product formation in nitrate limited experiments.</p>
3

Coupled Hydrological and Microbiological Processes Controlling Denitrification in Constructed Wetlands

Kjellin, Johan January 2007 (has links)
Treatment wetlands play an important role in reducing nitrogen content in wastewater and agricultural run-off water. The main removal process is denitrification and the removal efficiency depends on the hydrological and microbiological features of the wetland, especially in terms of water residence times and denitrification rates. The aim of this thesis was to increase the understanding of the coupled hydrological and microbiological processes regulating the denitrification capacity. This was done by applying a broad spectrum of analyses methods, including tracer experiment, water flow modeling, denitrification rate measurements, and analyses of the microbial community structures. The tracer experiment and flow modeling revealed that the wetland design, especially the vegetation, largely can affect the water residence time distributions in wetlands. In the investigated wetland, vegetation dominated the water flow, explaining 60-80% of the variance in water residence times, whereas basin shape only explained about 10% of the variance, but also mixing phenomena significantly affected the residence times and could considerably delay solutes. Measured potential denitrification rates in the wetland exhibited significant spatial variations, and the variations were best described by concentration of nitrogen in sediments and water residence time. Analyses of the denitrifying bacteria populations indicated that a few key populations dominated and that the community diversity increased with decreasing nutrient levels and increasing water residence times. Moreover, it was found that denitrification rates in terms of Menten and first order kinetics can be evaluated by fitting a mathematical expression, considering denitrification and other nitrogen transforming processes to measured product formation in nitrate limited experiments. / QC 20101110
4

GROUND WATER FLOW MODELING AND TRANSIENT PARTICLE TRACKING, APPLICATIONS FOR THE TRANSPORT OF <i>CRYPTOSPORIDIUM PARVUM</i> IN AN UNCONFINED BURIED BEDROCK VALLEY AQUIFER, SPRINGFIELD, OHIO

MERK, BRENDAN PAUL January 2005 (has links)
No description available.

Page generated in 0.1276 seconds