101 |
Turning Water Into Wine: The Celebration of Water Through the Aesthetic of the Sustainable LandscapeMinto, Kelly 10 July 2012 (has links)
This thesis examines the relationship between water and the winemaking industry through an integrated architectural approach to the landscape. The emphasis is on the refinement of water use for vineyard irrigation and wine processing, and the promotion of the value of water by celebrating a productive landscape. The proposition is explored through the design of a winery and its associated grapes to produce the wines.
|
102 |
Agronomic and environmental impacts of corn production under different water management strategies in the Canadian PrairiesCordeiro, Marcos R. C. January 2012 (has links)
A major challenge facing agriculture is to improve water use and minimize environmental impact while increasing productivity levels. This study, carried out in Winkler, Manitoba, tested four water management treatments: no drainage and no irrigation (NDNI as control), no drainage with overhead irrigation (NDIR), free drainage with overhead irrigation (FDIR), and controlled drainage with subirrigation (CDSI). Each treatment was replicated in three plots during two growing seasons in 2010 and 2011. The monitored variables included soil moisture content, water table depth variation, drainage outflow volume and quality, weather parameters, and agronomic indices. In 2010, yields were 8.48 (NDNI), 10.36 (NDIR), 10.10 (FDIR), and 9.22(CDSI) Mg ha-1 with only the mean yield difference for the NDIR and the CDSI treatments being statistically significant (p = 0.014). In 2011, yields were 9.25 (NDNI), 10.47 (NDIR), 11.28 (FDIR), and 9.49 (CDSI) Mg ha-1 with no statistically significant differences in yield. In 2010, the exports of NO3-N (138 kg ha-1), PO4-P (0.6 kg ha-1) and salts (2.34 Mg ha-1) from the FDIR treatment were significantly larger (p <0.05) than exports from CDSI, which were 0.07 kg ha-1, 0.08 kg ha-1, and 0.41 Mg ha-1, respectively. In 2011, the exports of NO3-N (36 kg ha-1), PO4-P (0.27 kg ha-1), and salts (1.1 Mg ha-1) from FDIR were significantly larger (p < 0.05) than the exports from CDSI which were 10 kg ha-1, 0.08 kg ha-1, and 0.39 Mg ha-1, respectively. These results indicate that irrigation was the main factor driving corn yields under the conditions prevailing in the Canadian Prairies, while subsurface drainage had a beneficial impact when the beginning of the season was wet. Also, this study showed the advantage of controlled drainage over free drainage in reducing the nutrients and salt exports.
|
103 |
The development of an in house greywater and roof water reclamation system for large institutions during 1994 to 1998Surendran, Sundaralingam S. January 2001 (has links)
For sustainable water management, here is a necessity to consider alternatives, in addition to conventional systems. The aim of this research is to develop and demonstrate a sustainables, from and greywater reclamation system for WC flushing and it was started in 1994. In the UK there are no water quality standards for WC flushing water use. There were no design guidelines for greywater water reclamation and no published study on the supply-dernandb alance, in detail, for water recycling in institutions such as universities. The research has shown the feasibility of planned direct grey and storm water reclamation and recycling system to manage growing water and wastewater problems. This thesis is based on the information gathered from 4 universities, 3 hotels and 3 recreational centres, and experiences gained at Loughborough University during the development and demonstration of the full scale "in-house grey and roof water" reclamation and recycling systems. The water use, greywater quality and roof water characteristics were studied in detail and this information was used for the development of the reclamation and recycling system. The studies showed that the water usage at the university halls were not similar to usage in households. Unlike large water supply schemes, small in-house systems generate a large peak factor for water use. To avoid deficit, in addition to personal washing waters, a top-up of laundry wastewater or roof water, and a well-designed balancing tank is necessary. The demonstration study shows that there was no standby mains' water used, which means that the water reclaimed was sufficient for reuse. The quality characterisation study shows that the greywater and first flush storm water roof runoff were polluted. The characteristics of combined grey and roof water are suitable for biological treatment. Based on the infomation, a lab-scale unit was developed; the reactor characteristics and performance such as head losses and removal efficiency were monitored; and the unit was refined. Two novel multi-barrier reclamation systems were developed to achieve sufficient quantity and near potable quality of water with minimum maintenance and cost. During 1997 the grey and roof water recycling system with laboratory tested physical and biological reclamation processes without the use of coagulants and disinfection were installed. The performance of the treatment system was closely monitored until 1998. This provided benefits in near potable quality of reclaimed water, low head loss, reliability, failure free operation and simple maintenance. The reclaimed effluent from Project I and 2 met the UK/EU bathing water standards and was also able to meet the US EPA standards for WC flushing. The microbial (using coliform as an indicators) quality of reclaimed water without disinfection is acceptable for controlled recycling systems (carefully monitored and fully informed). There were no odour problems in the treated water or sludge blockages. Comparatively, Project I was more efficient at removing coliform, turbidity, solids (suspended, dissolved, volatile), and Project 2 better at removing carbon (organic and inorganic). A simple cost benefit analysis done for the recycling system at Royce Hall of Residence showed 10 years pay back. More detailed cost-benefit analysis including comparisons of new built and retrofit recycling system and fife cycle analysis are recommended. This study shows that most of the people questioned were accepted and were willing to consider using the recycling system for toilet flushing, if the water was clear, colourless, odour free, carried no risk and gave cost-benefits. During the demonstration stage the users willingly accepted non-potable grey water reuse.
|
104 |
Displacement effect of industrial forest plantations to the native forests of the PhilippinesAustria, G. Unknown Date (has links)
No description available.
|
105 |
Energy efficiency of tillage operations in CambodiaOm, S. Unknown Date (has links)
No description available.
|
106 |
Rumen enhanced digestion of organic wasteBarnes, S. P. Unknown Date (has links)
No description available.
|
107 |
Motion of particles & bubbles in turbulent flowsZeng, Q. C. Unknown Date (has links)
No description available.
|
108 |
The ecological significance of dissolved organic nitrogen from wastewater treatment plants.Bowyer, J. C. Unknown Date (has links)
No description available.
|
109 |
Optimising phosphorus removal in constructed wetlands by using alum sludge from water treatment processesSimi, A. L. Unknown Date (has links)
No description available.
|
110 |
Effect of Tillage and Traffic on Soil OrganismsPangnakorn, U. Unknown Date (has links)
No description available.
|
Page generated in 0.1157 seconds