81 |
Behavior of a 1/6th scale, two-story, wood framed residential structure under surge wave loading /Wilson, Jebediah. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 54-55). Also available on the World Wide Web.
|
82 |
Solitary wave interaction and evolutionHoseini, Sayed Mohammad. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 87-91.
|
83 |
Observations of energy transfer mechanisms associated with internal waves /Gómez Giraldo, Evelio Andrés. January 2007 (has links)
Thesis (Ph.D.)--University of Western Australia, 2007.
|
84 |
Acoustic measurements of air entrainment by breaking waves /Terrill, Eric J. January 1998 (has links)
Thesis (Ph. D.)--University of California, San Diego, 1998. / Vita. Includes bibliographical references (p. 235-244).
|
85 |
An analysis of wave forces on prototype walls under tsunami loading /Oshnack, Mary Elizabeth. January 1900 (has links)
Thesis (M.Oc.E.)--Oregon State University, 2010. / Printout. Includes bibliographical references. Also available on the World Wide Web.
|
86 |
Mass transport due to surface waves in a water-mud systemHuang, Lingyan. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
87 |
Model simulations of bar evolution on a large scale laboratory beachTeran Cobo, Pablo. January 2007 (has links)
Thesis (M.C.E.)--University of Delaware, 2007. / Principal faculty advisor: James T. Kirby, Dept. of Civil & Environmental Engineering. Includes bibliographical references.
|
88 |
Wave propagation processes at the mouth of the Columbia River /Andes, Lisa January 1900 (has links)
Thesis (M.Oc.E.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 51-54). Also available on the World Wide Web.
|
89 |
Application of Numerical Model CGWave for Wave Prediction at Ponce de Leon Inlet, Florida, USAChhabra, Nishchey January 2004 (has links) (PDF)
No description available.
|
90 |
Desenvolvimento de software utilizando a técnica sph (smoothed particle hydrodynamics) na geração de ondas de submersãoVasco, Joel Roberto Guimarães [UNESP] 14 February 2014 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:49Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-02-14Bitstream added on 2014-11-10T11:57:57Z : No. of bitstreams: 1
000794369.pdf: 1824313 bytes, checksum: e7f4d7351e03eb7f04ae797b049cad17 (MD5) / O escorregamento de massas sólidas em lagos de águas tranquilas geram ondas devido à transferência de energia da massa deslizante para o corpo d’água. Essas ondas, chamadas de ondas de submersão, em particular as ondas solitárias, são conhecidas e estudadas há vários anos principalmente pela capacidade energética deste tipo de onda e seu potencial danoso. Entretanto, aproximações analíticas do fenômeno em tela esbarram em diversas dificuldades. Em outras palavras, a fase de geração de ondas, notadamente das ondas de impacto, é sabidamente complexa, não apenas pela dificuldade no estabelecimento da superfície livre (região do splash), mas também pelo relacionamento da dinâmica do material impactante com a altura da onda resultante. Por esse motivo, técnicas numéricas vêm sendo empregadas nestes fenômenos. Entre as aproximações numéricas utilizadas mais recentemente, os métodos sem malha vêm ganhando notoriedade, principalmente frente às suas vantagens. Livres da discretização da malha, problemas de superfície livre, mesmo com alta variabilidade, são factíveis. Neste contexto, lança-se mão de um código baseado no modelo SPH (Smoothed Particle Hydrodymanics), desenvolvido no âmbito desta Tese de Doutoramento e validado utilizando casos clássicos da literatura em escoamentos de fluido ideal (ruptura de barragens, geração e quebra de onda e esvaziamento de um reservatório) e real, de reologia newtoniana (Poiseuille com superfície livre, Poiseuille plano, escoamento de Couette e ruptura de barragens). De posse do código numérico, estima-se a altura da onda solitária gerada a partir do impacto de uma massa deslizante em meio líquido. A massa deslizante é representada por duas formas distintas: um bloco indeformável, modelado como um corpo rígido e um fluido ideal. No caso do bloco indeformável, embora o perfil de onda seja bem representado, a altura da ... / Landslides that impact into water (such as lakes) can generate waves due to the energy transfer from the solid to the water. These submerged waves, or more specifically solitons, are well known and have been studied for many years specially because of their massive energy and destructive potential. However, analitical approches of this problem are difficult. In another words, the wave’s generation phase is complex, primary due to the determination of the free surface (splash) and correlation between the energy of the landslide and the genereted wave. So, numerical methods are an alternative and interesting option. Among the recently used numerical methods, the mesh free has become notorious because of its advantages. Without the mesh restrain, free surface problems are easier to handle. In this context it is proposed a program based on SPH (Smoothed Particle Hydrodymanics) model, developed in this Thesis and tested in different scenarios considering the flow of ideal (dam break, wave generation and wave breaking and reservoir) and newtonian fluids (free surface Poiseuille flow, plane Poiseuille flow, Couette flow and dam break). So, the numerical code is used in order to evaluate the solitary wave height that is generated from the impact of a mass, which represents a landslide in a fluid. The mass is represented by two forms: an undeformable solid block and an ideal fluid. Both forms are tested, and the solitary wave is reproduced, and compared to experiments. Differences are noted among wave heights using a solid block, as reported by the literature. The comparison with the results from the mass represented as an ideal fluid showed a good approach for both the shape and the wave amplitude
|
Page generated in 0.0489 seconds