• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 10
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 21
  • 21
  • 19
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Comparative reproductive energetics and selenium ecotoxicology in three boreal-breeding waterfowl species

DeVink, Jean-Michel Albert 14 September 2007
Environmental conditions on wintering or spring-staging areas may influence subsequent reproductive performance in migratory birds. These cross-seasonal effects may result from habitat loss and degradation (e.g., via contamination) which in turn reduce reproductive success, particularly in waterfowl that use stored nutrients for reproduction. North American lesser scaup (<i>Aythya affinis</i>) and white-winger scoter (<i>Melanitta fusca</i>) numbers have declined over the past 20 years, particularly in the boreal forest, and remain well below conservation goals, whereas ring-necked duck (<i>A. collaris</i>) numbers have increased. Environmental changes on scaup and scoter wintering and staging areas have raised concern about possible cross-seasonal effects on birds arriving on breeding grounds. The spring condition hypothesis (SCH) purports that many female scaup fail to acquire sufficient nutrients in late winter and spring, causing a decrease in breeding propensity and productivity. The contaminant hypothesis proposes that increased exposure to contaminants (particularly selenium [Se]) on wintering and staging areas has decreased scaup productivity. Accordingly, I compared body condition and studied Se concentrations in scaup, scoters and ringnecks to test the condition and contaminant hypotheses. <p>Scaup had similar body condition to ringnecks, and had similar body mass compared to scaup collected near Yellowknife, NT, in 1968-70. There was no relationship between scaup and ringneck nutrient levels and claw tip carbon, nitrogen or hydrogen isotope values, suggesting that arrival body condition likely was not related to location or diet several months prior. Instead, scaup and ringnecks nutrient levels may be more affected by feeding or habitat conditions on or near the breeding grounds. Scaup had slightly higher liver Se concentrations than ringnecks, but levels in both species were below recognized harmful threshold concentrations; I found no relationship between Se and breeding propensity, or between Se and somatic lipid or protein stores. Scoters had much higher Se concentrations, yet contrary to predictions, there were positive relationships between Se and both lipid stores and breeding status. Follicle [Se] in scaup was below threshold concentrations; despite high liver Se in scoters, egg and follicle levels also were well below threshold concentrations. Using both body composition analysis and stable-isotope analysis I determined that scoters derive egg protein from their breeding ground diet, which likely prevents Se deposition from somatic protein to eggs, and egg lipids are apparently derived from somatic tissues. In all three species, liver Se concentrations were significantly correlated with claw tip ä15N. As the claw tip likely represents assimilated diet from 2-5 months prior to sampling, this correlation suggests that Se in these boreal breeding species is carried over from wintering and staging areas. <p>Overall, results did not support either the spring condition or contaminant hypotheses. Scaup and scoters are late-nesting species, with highest pair densities occurring at the northern extent of their range. Maximum ring-neck pair densities occur at more southern latitudes. Ring-necks also nest earlier and appear to be more flexible in timing of nest initiation. Therefore, it is possible that due to climate change, early spring conditions alter the optimal timing of nest initiation to the detriment of late-nesting species such as scaup and scoters, and favour earlier nesters like ringnecks. Further research into this mismatch hypothesis is warranted.
62

Brood ecology and population dynamics of King Eiders

Mehl, Katherine Rose 14 July 2004
Birth and death processes and the extent of dispersal directly affect population dynamics. Knowledge of ecological factors that influence these processes provides insight into natural selection and understanding about changes in population size. King eiders (Somateria spectabilis) breed across the arctic region of North America and winter in polar oceanic waters of the western and eastern regions of the continent. Here I studied a local population of King Eiders at Karrak Lake, Nunavut, where I used analysis of naturally-occurring stable isotopes (13C, 15N) from feathers, in conjunction with banding data, to investigate the extent of dispersal among winter areas and the influence of winter area on subsequent breeding. In addition, I used capture-mark-recapture methods to (1) investigate the relative contributions of survival and recruitment probabilities to local population dynamics, and (2) to test hypotheses about the influence of specific ecological factors on those probabilities or their components, e.g., nest success, duckling survival. Isotopic data suggested that female King Eiders were not strongly philopatric to wintering areas between years. Individuals that wintered in western seas initiated nests earlier and had slightly larger clutch sizes during early nest initiation relative to females that wintered in the east. Female condition during incubation did not vary by winter area. Female King Eiders of known breeding age were at least 3-years-old before their first breeding attempt. Age of first successful breeding attempt did not appear to be influenced by body size. However, after reaching breeding age, larger females apparently experienced greater breeding propensity. Adult survival rate (1996-2002) was estimated as 0.87 and recapture probabilities varied with time and ranged from 0.31 to 0.67. There is no evidence of survival advantages related to larger size. Population growth for this local study area was high, estimated at 20%/year with larger females contributing more to the population growth than smaller females. With continued population growth, density-dependent effects on components of recruitment appeared to emerge; the proportion of the female population that nested successfully declined with increasing population size. The probability of breeding successfully did not correlate with Mayfield estimates of nest success. To gain insight into King Eider brood ecology I, respectively, monitored 111 and 46 individually-marked ducklings from broods of 23 and 11 radio-marked King Eiders during 2000 and 2001. Total brood loss accounted for 84% of all duckling mortality with most brood loss (77%) less than 2 days after hatch. Estimated apparent survival rates of ducklings to 22 days of age were 0.10 for those that remained with radio-marked females, 0.16 for all ducklings, including those that had joined other broods, and 0.31 for broods. Ducklings brooded by larger females experienced higher survival than those brooded by smaller females, and ducklings that hatched earlier in the breeding season survived at higher rates. Overland brood movements of 1 km or more occurred in both years, and survival was greatest for ducklings that dispersed from Karrak Lake to smaller ponds than on Karrak Lake itself, the central nesting area. Estimates of duckling survival, combined with relative contributions to the population by adults, suggest that ecological factors such as body size can influence population growth. Furthermore, low duckling survival and delayed maturity, emphasize the need of high adult survival for population growth to occur. These data, in combination with evidence of dispersal among wintering areas have helped contribute to a broader understanding of North American King Eider demographics.
63

Brood ecology and population dynamics of King Eiders

Mehl, Katherine Rose 14 July 2004 (has links)
Birth and death processes and the extent of dispersal directly affect population dynamics. Knowledge of ecological factors that influence these processes provides insight into natural selection and understanding about changes in population size. King eiders (Somateria spectabilis) breed across the arctic region of North America and winter in polar oceanic waters of the western and eastern regions of the continent. Here I studied a local population of King Eiders at Karrak Lake, Nunavut, where I used analysis of naturally-occurring stable isotopes (13C, 15N) from feathers, in conjunction with banding data, to investigate the extent of dispersal among winter areas and the influence of winter area on subsequent breeding. In addition, I used capture-mark-recapture methods to (1) investigate the relative contributions of survival and recruitment probabilities to local population dynamics, and (2) to test hypotheses about the influence of specific ecological factors on those probabilities or their components, e.g., nest success, duckling survival. Isotopic data suggested that female King Eiders were not strongly philopatric to wintering areas between years. Individuals that wintered in western seas initiated nests earlier and had slightly larger clutch sizes during early nest initiation relative to females that wintered in the east. Female condition during incubation did not vary by winter area. Female King Eiders of known breeding age were at least 3-years-old before their first breeding attempt. Age of first successful breeding attempt did not appear to be influenced by body size. However, after reaching breeding age, larger females apparently experienced greater breeding propensity. Adult survival rate (1996-2002) was estimated as 0.87 and recapture probabilities varied with time and ranged from 0.31 to 0.67. There is no evidence of survival advantages related to larger size. Population growth for this local study area was high, estimated at 20%/year with larger females contributing more to the population growth than smaller females. With continued population growth, density-dependent effects on components of recruitment appeared to emerge; the proportion of the female population that nested successfully declined with increasing population size. The probability of breeding successfully did not correlate with Mayfield estimates of nest success. To gain insight into King Eider brood ecology I, respectively, monitored 111 and 46 individually-marked ducklings from broods of 23 and 11 radio-marked King Eiders during 2000 and 2001. Total brood loss accounted for 84% of all duckling mortality with most brood loss (77%) less than 2 days after hatch. Estimated apparent survival rates of ducklings to 22 days of age were 0.10 for those that remained with radio-marked females, 0.16 for all ducklings, including those that had joined other broods, and 0.31 for broods. Ducklings brooded by larger females experienced higher survival than those brooded by smaller females, and ducklings that hatched earlier in the breeding season survived at higher rates. Overland brood movements of 1 km or more occurred in both years, and survival was greatest for ducklings that dispersed from Karrak Lake to smaller ponds than on Karrak Lake itself, the central nesting area. Estimates of duckling survival, combined with relative contributions to the population by adults, suggest that ecological factors such as body size can influence population growth. Furthermore, low duckling survival and delayed maturity, emphasize the need of high adult survival for population growth to occur. These data, in combination with evidence of dispersal among wintering areas have helped contribute to a broader understanding of North American King Eider demographics.
64

Comparative reproductive energetics and selenium ecotoxicology in three boreal-breeding waterfowl species

DeVink, Jean-Michel Albert 14 September 2007 (has links)
Environmental conditions on wintering or spring-staging areas may influence subsequent reproductive performance in migratory birds. These cross-seasonal effects may result from habitat loss and degradation (e.g., via contamination) which in turn reduce reproductive success, particularly in waterfowl that use stored nutrients for reproduction. North American lesser scaup (<i>Aythya affinis</i>) and white-winger scoter (<i>Melanitta fusca</i>) numbers have declined over the past 20 years, particularly in the boreal forest, and remain well below conservation goals, whereas ring-necked duck (<i>A. collaris</i>) numbers have increased. Environmental changes on scaup and scoter wintering and staging areas have raised concern about possible cross-seasonal effects on birds arriving on breeding grounds. The spring condition hypothesis (SCH) purports that many female scaup fail to acquire sufficient nutrients in late winter and spring, causing a decrease in breeding propensity and productivity. The contaminant hypothesis proposes that increased exposure to contaminants (particularly selenium [Se]) on wintering and staging areas has decreased scaup productivity. Accordingly, I compared body condition and studied Se concentrations in scaup, scoters and ringnecks to test the condition and contaminant hypotheses. <p>Scaup had similar body condition to ringnecks, and had similar body mass compared to scaup collected near Yellowknife, NT, in 1968-70. There was no relationship between scaup and ringneck nutrient levels and claw tip carbon, nitrogen or hydrogen isotope values, suggesting that arrival body condition likely was not related to location or diet several months prior. Instead, scaup and ringnecks nutrient levels may be more affected by feeding or habitat conditions on or near the breeding grounds. Scaup had slightly higher liver Se concentrations than ringnecks, but levels in both species were below recognized harmful threshold concentrations; I found no relationship between Se and breeding propensity, or between Se and somatic lipid or protein stores. Scoters had much higher Se concentrations, yet contrary to predictions, there were positive relationships between Se and both lipid stores and breeding status. Follicle [Se] in scaup was below threshold concentrations; despite high liver Se in scoters, egg and follicle levels also were well below threshold concentrations. Using both body composition analysis and stable-isotope analysis I determined that scoters derive egg protein from their breeding ground diet, which likely prevents Se deposition from somatic protein to eggs, and egg lipids are apparently derived from somatic tissues. In all three species, liver Se concentrations were significantly correlated with claw tip ä15N. As the claw tip likely represents assimilated diet from 2-5 months prior to sampling, this correlation suggests that Se in these boreal breeding species is carried over from wintering and staging areas. <p>Overall, results did not support either the spring condition or contaminant hypotheses. Scaup and scoters are late-nesting species, with highest pair densities occurring at the northern extent of their range. Maximum ring-neck pair densities occur at more southern latitudes. Ring-necks also nest earlier and appear to be more flexible in timing of nest initiation. Therefore, it is possible that due to climate change, early spring conditions alter the optimal timing of nest initiation to the detriment of late-nesting species such as scaup and scoters, and favour earlier nesters like ringnecks. Further research into this mismatch hypothesis is warranted.
65

Ecological and Molecular Characterization of Avian Influenza Viruses Obtained from Waterfowl on the Texas Coast

Ferro, Pamela Joyce 2010 August 1900 (has links)
We collected 6,823 cloacal swabs over four years (2005–2006: 1,460; 2006– 2007: 2,171; 2007–2008: 2,424; and 2008–2009: 768) from 30 potential avian host species. Most samples (88.3 percent) were from dabbling ducks (genus Anas), while diving ducks (genus Aythya) accounted for 5.0 percent, and geese (genera Anser, Chen, and Branta) 3.0 percent of the samples tested. Waterfowl (Anatidae) comprised 98.7 percent of samples, with 1.8 percent from non-migratory dabbling ducks (genus Anas). All samples were screened for avian influenza virus (AIV) by AIV-matrix real-time RT-PCR (rRT-PCR); all rRT-PCR positive samples (541) were processed for virus isolation as well as 4,473 rRT-PCR negative samples. Differences were observed in apparent prevalence estimates over the four years between virus isolation (0.5, 1.3, 3.9, and 0.7 percent) and rRT-PCR (5.9, 6.5, 11.2, and 5.5 percent). We isolated 138 AIVs, of which two were obtained from rRT-PCR negative samples. Unlike previous reports of seasonal variation in AIV prevalence, we documented differences in prevalence estimates among months using rRT-PCR only during 2008–2009 and by virus isolation only during 2006–2007 and 2007–2008. Several of the AIV subtypes we identified are common in North America (e.g., H3, H4, and H6); H3N8 and H4N6 were the most common subtype combinations isolated. Similar to most surveillance studies, we found no significant difference in AIV infection based on host sex, but did find that juveniles were more likely to be positive for AIV than adults. We also documented that dabbling ducks were more likely to be positive for AIV than diving ducks, although not all dabbling ducks are equally likely to be positive. Molecular sequence analysis revealed no insertions of multiple basic amino acids at the cleavage site, which supported the identification of low pathogenic AIV. Phylogenetic anlyses performed on H5, H6, H7, N1, N2, N3, and N4 subtypes sequenced indicated similarity to other North American isolates with the exception of seven H6 which were more similar in amino acid translation to an isolate from Japan. In sum, this is the first multiyear study of avian influenza viruses on waterfowl wintering grounds of the Central Flyway, a historically understudied area of North America.
66

FACTORS DETERMINING HABITAT SELECTION BY SPRING MIGRATING WATERFOWL ALONG THE WABASH RIVER, ILLINOIS

O'Shaughnessy, Ryan 01 December 2014 (has links)
The main proponent of management of any animal species is habitat management. The ability of habitats to maintain species communities will depend on the variation in both habitat structure and composition. While spatial variation in habitat resources plays a critical role in determining the distribution of species, an equally important consideration that must be accounted for is temporal variation in the needs of the target species. Nutritional requirements, and thus the habitats used to fulfil those nutritional needs, will be different depending on if the individual is breeding, migrating, molting, enduring winter, or establishing a new range. For waterfowl, we currently assume that winter and migration are nutritionally stressful and are consequently the periods most limiting to populations. The theory of ideal free distribution assumes that animals distribute themselves according to the factor most limiting to their fitness. In the case of non-breeding waterfowl, this factor is believed to be food. We assume if habitats with abundant food resources are provided, waterfowl will make use of those habitats. Deviations from an ideal free distribution based on food become problematic for managers since these deviations will keep some areas from being exploited to their potential, while other areas may become over-exploited. Recent observations have made it clear that this assumption may need to be reconsidered for effective waterfowl management. In this dissertation I quantitatively examine the degree to which spring migrating waterfowl conform to, or deviate from, an ideal free distribution based on food. Since food availability was not expected to account for 100% of waterfowl distribution, I further investigated what other potential habitat components influence the distribution of spring migrating waterfowl. In the first chapter of this dissertation, I explicitly tested the influence of food availability on waterfowl distribution. A series of paired 0.42 ha (1 acre) plots were established in various habitat types. One plot in each pair was treated with corn to a density of 2000 kg/ha, while the remaining plot was used as a control. Background food availability was controlled for by taking core samples from each plot, and estimating the natural seed and invertebrate biomass. The abundance each species of waterfowl using the plots was recorded during morning and afternoon observation periods. Linear mixed models were used to assess how variations in food availability influenced distribution of waterfowl. Although the waterfowl community showed a significant preference for treatment plots, our ability to influence abundance was low. Food availability accounted for minimal variation in abundance of the waterfowl community as a whole or for each focal species. Since the results of the first chapter showed food availability to be a poor predictor of waterfowl distribution, in the second chapter I set out to determine other potential habitat variables could be responsible for driving waterfowl distribution during spring migration. After each observation period, a series of habitat structural measurements were made within each paired plot. Habitat measurements included water characteristics, vegetation structure, vegetation type, habitat type, and weather conditions. Linear mixed models and model selection were employed to determine which of the habitat characteristics showed the greatest ability to predict waterfowl abundance on study plots. Models containing precipitation and Wabash River flood stage predictor variables were the best performing, and were the best predictors of waterfowl abundance on study plots. The results from this chapter encouraged investigation into how environmental factors shape the formation of local duck communities are structured from regional pools. In the third chapter of this dissertation I investigate the relationship between local and regional waterfowl community structure and how this relationship is mediated through environmental filters which dictate what proportion of the regional species pool exists at local scales. To address this relationship, I tested three hypotheses: 1) resource availability drives species diversity at local scales; 2) similarity between local and regional habitats will result in a similar species community occurring at both scales, and; 3) increased heterogeneity of local habitat structure will result in more diverse waterfowl communities at local scales. I used Mahalanobis distance and cumulative standard deviation of habitat variables in conjunction with mixed models and model selection to compare hypotheses and determine which had the greatest potential for mediating local community structure from regional pools. Increasing resource abundance appeared to have the greatest influence over local duck diversity, but the model indicated that although species diversity could be increased by increasing food abundance, diversity at local scales would become saturated before becoming representative of the regional community.
67

MUTE SWAN IMPACTS ON NATIVE WATERBIRDS AND SUBMERGED AQUATIC VEGETATION IN ILLINOIS

Phillips, Adam C. 01 December 2010 (has links)
Mute swans (Cygnus olor), an exotic species of waterfowl, have been found to negatively impact native waterbirds and submerged aquatic vegetation (SAV) communities in the Chesapeake Bay and lower Great Lakes. Mute swans were first recorded in Illinois in 1971 and their population is small, but growing. In 2008-09, I studied mute swans in central Illinois to investigate whether they negatively impacted waterbirds through aggressive actions and SAV through over-grazing. I also estimated mute swan territory size to estimate potential habitat exclusion and population growth potential. Mute swan territory size averaged 7.0 ha, allowing the current population of approximately 60 breeding pairs to increase to over 125 pairs. I did not find that mute swans reduced above-ground SAV, although I did find that below-ground biomass was reduced where mute swans fed freely. Mute swan aggression was most frequent in early spring and decreasing throughout the breeding season. Most waterbirds were found just as close or closer to mute swans as to control points, although gadwall (Anas strepera) were found farther away perhaps suggesting either avoidance or exclusion. As mute swans become more abundant in Illinois, further monitoring is necessary to prevent significant negative impacts to wetlands and waterbirds.
68

Diets of Spring-Migrating Waterfowl in the Upper Mississippi River and Great Lakes Region

Hitchcock, Jr., Arthur Neil 01 January 2009 (has links)
I evaluated diet and food selection of 5 species of spring-migrating female waterfowl including 3 dabbling ducks (Blue-winged teal, Anas discors, Mallard, Anas platyrhynchos, Gadwall, Anas strepera) and 2 diving ducks (Lesser Scaup, Aythya affinis, and Ring-necked duck, Aythya collaris). Diet was evaluated with regards to the proportion of invertebrates and seeds consumed, and compared to forage availability data collected in habitats available to them at 6 study locations throughout the Upper Mississippi River and Great Lakes Region. I found latitude (i.e., stage of migration), longitude, food availability, and date all influenced the diet of spring migrating waterfowl, with some factors having a stronger influence than others. I observed differing diet trends with regard to foraging guild (e.g., dabbling and diving ducks), as each foraging guild was represented by 1 species that was heavily dependant on invertebrates (dabbling duck - Blue-winged teal; diving duck - Lesser scaup) and 1 species that was heavily dependant on seeds (dabbling duck - Mallard; diving duck - Ring-necked duck). The proportion of invertebrate foods in the diet increased throughout spring for all species of waterfowl, suggesting the importance of invertebrate food sources during spring staging. Data from this study provides valuable information to habitat managers and conservationists wishing to improve spring habitat conditions for migrating waterfowl, which likely influences waterfowl productivity.
69

Winter habitat for dabbling ducks on southeastern Vancouver Island, British Columbia

Eamer, Joan January 1985 (has links)
This study is an examination of the use of coastal estuaries and nearby farmland as habitat by dabbling ducks (mallard and American wigeon) during migrating and wintering periods. Its aim was to identify aspects of British Columbia coastal habitat of importance to dabblers through an analysis of the ducks' movements among habitat types and through a description of where and on what ducks feed. Data were collected in 1979 and 1980 along a 30 km stretch of coastline on southeastern Vancouver Island. Results are presented in 3 parts. Part 1 examines the relative use of farm and coastal habitat through a series of censuses conducted weekly at 8 farm and 8 coastal sites. The strong negative correlation between counts at farm and coastal sites indicates that dabblers treat them as alternative habitats. The numbers of ducks on farms was positively correlated with the area of standing water on the fields. Farm habitat, apparently preferred during warm, wet weather, was not used when fields were dry or frozen. Part 2 is a description of feeding location on fields, at estuaries and at a shallow, nonestuarine bay. It is based on observations at selected sites at high and low tide levels. Each duck in each observation period was classified as to location and activity. Both species fed primarily in shallow water, their feeding location shifting with the tides. Both marsh and marine sections of estuaries were used extensively for feeding. The shallow bay was used especially by American wigeon at low tide in fall and early winter. The high marsh areas at estuaries were particularly attractive to mallards when flooded by exceptionally high tides. Feeding intensities were consistently high at farm sites for both species. In Part 3, 23 mallards and 40 American wigeon were shot while feeding in estuarine locations commonly used for feeding. Analysis of gullet contents revealed that both species ate a wide variety of items. Main foods were, for mallards, seeds, invertebrates and green algae and, for American wigeon, green algae, roots, seeds and green vegetation. Algae and marine Invertebrates are not usually considered to be important dabbler foods in estuaries. Major conclusions and recommendations are: 1) Both farm and coastal sites are important to dabblers, with fields being favoured as feeding locations under good flood conditions and coastal habitat being vital during dry or freezing periods. As dabblers move among sites, assessment and management of wintering dabbler habitat should be by wetland complexes rather than by individual estuaries. 2) Dabblers feed in or near shallow water. Fields that do not flood are not worth maintaining as dabbler habitat. Assessment of estuarine marshes should consider the availability of food at all points of the tidal cycle. 3) As both species feed on a wide variety of items, factors affecting shallow water flooding and thus food availability are more important than plant species composition. 4) Marine deltas and beaches are important as refuges from disturbance and as feeding grounds. They form an integral part of dabbler coastal habitat. / Science, Faculty of / Zoology, Department of / Graduate
70

Year-round influenza A virus surveillance in mallards (Anas platyrhynchos) reveals genetic persistence during the under-sampled spring season

Lauterbach, Sarah E. January 2020 (has links)
No description available.

Page generated in 0.0676 seconds