1 |
Strategic management of artificial watering points for biodiversity conservationMontague-Drake, Rebecca, School of Biological, Earth & Environmental Sciences, UNSW January 2004 (has links)
Since pastoralism began in Australia???s rangelands, the number of artificial watering points (AWPs) has increased dramatically, such that today, few areas of rangeland are further than 10 km from water. This increased availability of water has caused many ecological impacts. Unfortunately, such impacts are poorly understood in the context of an Australian conservation reserve, thus hindering strategic management. This study examined the spatial distribution of vertebrate (kangaroos, small mammals, lizards and avifauna) and vegetative variables around open AWPs as well as AWPs that have been closed since pastoralism (sheep-grazing) ceased nearly thirty years ago in Sturt National Park, arid New South Wales. The study also examined vertebrate use of AWPs, with a particular emphasis on kangaroos and avifauna. The study revealed that most variables showed few differences in spatial distribution with distance from open and closed AWPs, thus suggesting that the observed piospheric impacts were primarily attributable to historical sheep-grazing. Indeed, piospheric patterns were weak suggesting some recovery over the last thirty years. That kangaroos did not exhibit water-focused grazing is no surprise, since despite their regular use of AWPs, particularly during hot, dry times, the current spatial arrangement of AWPs facilitates regular travel to, and from, such resources allowing kangaroos, like much other fauna, to distribute themselves in relation to food and shelter preferences rather than in relation to water supply. In contrast, the majority of avifaunal groups (excluding ground-dwelling species) were clustered around open AWPs, often irrespective of season, because of food and water requirements. Such spatial concentrations of avifauna are thought to cause a range of interspecific effects. Experimental AWP closure and GIS modelling showed that whilst closure of AWPs will increase the average distance to water, which will have key benefits, the majority of areas in Sturt National Park would still be accessible to most water-dependent species even if all unused AWPs were closed. Strategic retention of AWPs to replace water sources lost since European settlement, aid threatened and migratory species??? conservation and enhance nature-based tourism opportunities is thus recommended and an example of a strategic management and monitoring plan outlined.
|
2 |
Strategic management of artificial watering points for biodiversity conservationMontague-Drake, Rebecca, School of Biological, Earth & Environmental Sciences, UNSW January 2004 (has links)
Since pastoralism began in Australia???s rangelands, the number of artificial watering points (AWPs) has increased dramatically, such that today, few areas of rangeland are further than 10 km from water. This increased availability of water has caused many ecological impacts. Unfortunately, such impacts are poorly understood in the context of an Australian conservation reserve, thus hindering strategic management. This study examined the spatial distribution of vertebrate (kangaroos, small mammals, lizards and avifauna) and vegetative variables around open AWPs as well as AWPs that have been closed since pastoralism (sheep-grazing) ceased nearly thirty years ago in Sturt National Park, arid New South Wales. The study also examined vertebrate use of AWPs, with a particular emphasis on kangaroos and avifauna. The study revealed that most variables showed few differences in spatial distribution with distance from open and closed AWPs, thus suggesting that the observed piospheric impacts were primarily attributable to historical sheep-grazing. Indeed, piospheric patterns were weak suggesting some recovery over the last thirty years. That kangaroos did not exhibit water-focused grazing is no surprise, since despite their regular use of AWPs, particularly during hot, dry times, the current spatial arrangement of AWPs facilitates regular travel to, and from, such resources allowing kangaroos, like much other fauna, to distribute themselves in relation to food and shelter preferences rather than in relation to water supply. In contrast, the majority of avifaunal groups (excluding ground-dwelling species) were clustered around open AWPs, often irrespective of season, because of food and water requirements. Such spatial concentrations of avifauna are thought to cause a range of interspecific effects. Experimental AWP closure and GIS modelling showed that whilst closure of AWPs will increase the average distance to water, which will have key benefits, the majority of areas in Sturt National Park would still be accessible to most water-dependent species even if all unused AWPs were closed. Strategic retention of AWPs to replace water sources lost since European settlement, aid threatened and migratory species??? conservation and enhance nature-based tourism opportunities is thus recommended and an example of a strategic management and monitoring plan outlined.
|
3 |
The effects of artificial watering points on the distribution and abundance of avifauna in an arid and semi-arid mallee environmentHarrington, Rhidian January 2002 (has links) (PDF)
The role of artificial watering points in the avifaunal dynamics of the semi-arid mallee woodlands of southeast Australia was examined. Species richness and abundance were monitored throughout the year at different distances from water to determine how birds were distributed around water points and how this changed in relation to environmental factors such as climate. Vegetation attributes were also measured to determine which factors explained patterns in the avifauna with distance from water, and also to allow a description of the vegetation in relation to the water points. Water points were monitored throughout the year to determine which species were utilising them, under which environmental circumstances and for what purposes. Knowledge of the water utilisation behaviour of individual bird species allowed some explanation of their distribution patterns, as well as an ability to predict the likely effects of water point closure on those bird species. The closure of two water points during the study allowed an assessment of the immediate effects of water point closure on avifauna (For complete abstract open document)
|
Page generated in 0.0707 seconds