1 |
Investigating Wind Characteristics and Wind Stress on the Coastal Waters of Taiwan Based on the Meteorological Buoy DataWu, Chun-da 25 January 2006 (has links)
This study is about the data analysis of wind speed on sea surface, water temperature, atmospheric temperature, and sea waves observations from four buoy stations (Hua-Lian , Hsin-Chu , E-Luuan-Bi and Kin-Men) that belong to Central Weather Bureau Republic of China and Water Resources Agency, and related researches. The period of this study is in winter and summer from 2001 to 2003.
Because of the shelter effect from building or hillocks in land, the wind speed on land is abated and not consistent with that on sea. Comparing data form two island stations ( Dongjido and Lanyu) and four buoy stations, the winds around Taiwan are almost the same. That means the monsoon controls the wind direction in summers and winters. Comparing the quantitative results from different wind speed areas in same period of time, the continuity of sea wind is better than that of land wind, especially best in west Taiwan. Also comparing the changes of wind speed in different atmospheric stability layers, wind is stronger in neural than others. Wind speed distribution also showed wind speeds increased when it is far from land, and sea breeze happened near land within 1-2 kilometer.
Sea temperature and wind speed are the factors affecting stability. The diurnal variation of air temperature is greater than that of sea and diurnal variation of sea is more significant during winter. Especially along coastal in Eastern Taiwan, the temperature difference between sea and atmosphere could be greater than 10 ¢J, moreover the wind speed on sea surface in Hua-Lian is slow. Therefore, it caused more unstable on sea surface in Hua-Lian.
waves could be classified into two types by wave age: swell and wind sea. Swell means because of passing long fetch, the weave height and wave period are saturated and no longer develop. It can¡¦t reveal the effects of sea wind on waves. Therefore, if swell is the major composition of waves, the inaccuracy of calculated stress would be large. On the contrary, when wind sea is the major composition of waves, roughness could be calculated by wave steepness.
While analyzing coefficient of momentum flux on sea surface near Taiwan, gust factor under neutral and unstable conditions had different. Gust factor would change with wind speed under neutral condition, but change with stability under unstable condition. In neutral condition, wind speed and drag coefficient are direct proportion and then correlation among p of power law of wind profile, turbulence intensity and gust factor under neutral condition and strong wind are similar, the value close to 0.1.
|
2 |
Développement et validation d'un modèle statistique de la surface de la mer pour la télédétection aux hyperfréquences / Development and validation of a sea surface statistical model for microwave remote sensingBaufays - Gaublomme, Christine 15 September 2005 (has links)
Le laboratoire TELE a développé une méthode d'évaluation des paramètres qui déterminent l'état de la surface de la mer, à partir de mesures effectuées à distance par une combinaison d'instruments hyperfréquences embarqués à bord de satellites. La résolution de ce problème nécessite de construire un modèle statistique de la surface de la mer comme fonction d'un nombre limité de paramètres pertinents, de développer le modèle de diffusion des ondes électromagnétiques par la mer rugueuse, de simuler, pour un ensemble donné d'états de mer, les mesures attendues des satellites et de mettre au point la méthode de calcul des paramètres descriptifs de l'état de la mer à partir des mesures des satellites (inversion).
L'objectif de cette thèse est d'analyser, de développer et d'implémenter la modélisation statistique de la surface de la mer et de valider ce modèle, appelé UCL-3, à partir des données réelles. Notre recherche a permis de déterminer les quatre paramètres pertinents qui décrivent l'état de la mer. La structure des petites vagues résulte de la réaction instantanée de la surface au vent local et peut être décrite à l'aide de ce seul paramètre. Par contre, la structure des grandes vagues contient l'histoire de la vague ; c'est pourquoi, nous avons proposé de la décrire non seulement en fonction de la vitesse du vent mais aussi de la pente significative des vagues, de la distance d'action au vent et du nombre d'onde au pic du spectre des déplacements de la surface.
La qualité de ce modèle a été confrontée avec des données de terrain, en particulier celles de la bouée BEATRICE (située au large de l'île d'Ouessant, France). Ensuite, le modèle a été validé à l'aide de données mesurées par des satellites. Nous avons porté une attention particulière à la mission TANDEM, qui combine en synergie des données provenant de divers senseurs à bord des satellites ERS-1 et ERS-2. Le modèle UCL-3 réduit la quantité des données pour lesquelles la procédure des précédentes recherches ne fonctionnait pas. Enfin, les grandeurs géophysiques obtenues ont été comparées avec des mesures simultanées « in situ » de bouées NOAA situées dans l'Océan Atlantique, l'Océan Pacifique Nord et le Golfe d'Alaska. Cette comparaison satellite – bouée montre que les résultats obtenus par l'inversion des mesures radars concordent avec ceux mesurés « in situ » par des bouées. / The Telecommunications and Remote Sensing Laboratory of UCL has developed a method to retrieve the sea surface state parameters, from remote sensing measurements collected by a combination of microwave satellite payloads. This approach has required to construct a rough sea surface statistical model (wave displacement spectrum, long wave slope probability density function, ... ) as a function of a limited number of relevant sea state parameters, to develop an electromagnetic scattering model suitable for the rough sea surface model, to simulate radar and radiometric measurements for a given set of sea states and to develop a computational inversion method to retrieve the sea state parameters from satellite data.
The objective of this thesis has been to analyze, develop and implement the statistical modeling of the rough sea surface and to validate this model (called UCL-3) on real data. In this research, four parameters have been chosen as the minimum set required to provide a suitable enough description of the sea state for microwave remote sensing purposes. The small wave structure of the rough sea depends on the instantaneous local wind speed, therefore it may be described by this parameter only. On the other hand, the large sea wave structure which contains the wave history needs more degrees of freedom; therefore, we propose to describe these waves not only as a function of the wind speed but also of the wave significant slope, of the fetch and of the wavenumber at the peak of the surface displacement spectrum. With respect to previous researches made at UCL we have introduced an additional peak enhancement in the large sea wave spectrum.
The quality of the resulting sea surface model has been confronted with “ground truth data” in particular those from the BEATRICE buoy (located near Ouessant Island, West of France). In a second step, the surface model, along with the electromagnetic scattering one, has then been validated on satellite data. In this thesis a particular attention has been paid to the TANDEM mission synergistically combining data from different sensors borne on two different satellites ERS1 and ERS2. The obtained geophysical retrievals have been compared with simultaneous "in situ" buoy measurements from a set of NOAA buoys located in the Atlantic Ocean, the Pacific Ocean and the Gulf of Alaska. This comparison allowed us to improve models previously derived at UCL and to reduce the percentage of retrieval failures i.e. the amounts of data points for which the retrieval procedure in the previous researches was failing. These sea surface results from inverted radar data agree with those derived from buoy data.
|
3 |
Atmosphere-ocean Interactions in Swell Dominated Wave FieldsSemedo, Alvaro January 2010 (has links)
Ocean wind waves represent the atmosphere-ocean boundary, playing a central role in the air-sea exchanging processes. Heat, mass and momentum are transferred across this boundary, with waves mediating the exchange of principally the momentum between the winds and the ocean surface. During the generation process waves are called wind sea. When they leave their generation area or outrun their generating wind they are called swell. The wave field can be said to be dominated either by wind sea or swell. Depending on the wave regime the momentum and energy exchanging processes and the degree of coupling between the waves and the wind is different. During the growing process, waves act as a drag on the surface wind and the momentum flux is directed downward. When swell dominates the wave field a reverse momentum flux mechanism occurs triggered by swell waves traveling considerably faster than the surface winds. The momentum transfer is now directed from the waves to the atmosphere, and takes place because swell waves perform work on the atmosphere as part of their attenuation process. This upward momentum transfer has an impact on the lower atmosphere dynamics, and on the overall turbulence structure of the boundary layer. A detailed qualitative climatology of the global wind sea and swell fields from wave reanalysis data, is presented, revealing a very strong swell dominance of the World Ocean. The areas of larger potential impact of swell on the atmosphere, from a climatological point of view, are also studied. A model that reproduces the swell impact on the lower atmosphere dynamics, conceptually based on the energy transfer from the waves to the atmosphere, is presented – a new parameterization for the wave-induced stress is also proposed. The model results are compared with field observations. A modeling simulation, using a coupled wave-atmosphere model system, is used to study the impact of swell in a regional climate model, by using different formulations on how to introduce the wave state effect in the modeling system. / Gränsen mellan hav och atmosfär beskrivs av vågor, dessa spelar en central roll i utbytesprocesser mellan hav och atmosfär. Värme, massa och rörelsemängd överförs vid ytan och utbytet av rörelsemängd mellan vind och havsyta styrs i stor utsträckning av vågorna. Då vågor skapas kallas de för vinddrivna vågor. När vågorna sedan lämnar området där de genererats eller rör sig fortare än den vind som genererat dem kallas de dyning. Ett vågfält kan sägas vara dominerat av antingen vinddrivna vågor eller dyningsvågor. Beroende på vilken vågregim som råder så är kopplingen mellan vågor och vind olika och därmed också utbytesprocesserna för rörelsemängd och energi. Då vågorna genereras fungerar de som en bromsande kraft för vinden och impulsutbytet är nedåtriktat. När dyning dominerar vågfältet inträffar en mekanism för omvänt impulsutbyte som sätts igång av dyningsvågor som färdas avsevärt snabbare än vinden. Rörelsemängd överförs då från vågorna till atmosfären, eftersom dyningsvågorna utför arbete på atmosfären då de dämpas. Den uppåtriktade transporten av rörelsemängd har en stor effekt på dynamiken och turbulensstrukturen i lägre delen av atmosfären. En detaljerad kvalitativ klimatologi av globala vågfält (vinddrivna och dyning) från återanalysdata presenteras och visar att dyning dominerar vågfältet på världshaven. Områden där man kan förvänta sig störst effekt av dyning på atmosfären har identifierats. En konceptuellt baserad modell som reproducerar effekten av dyning på dynamiken i lägre delen av atmosfären presenteras. Modellen styrs av överföring av energi från vågor till atmosfären. I modellen föreslås även en ny parameterisering för våginducerad kraft på havsytan. Modellresultaten är utvärderade mot fältmätningar. En regional klimatmodell, med ett kopplat våg-atmosfärssystem, har använts för att studera den långtida effekten av dyning vid klimatsimulering. Olika formuleringar för beskrivningen av vågornas effekt på atmosfären har använts, beroende på om vinddrivna vågor eller dyning dominerar vågfältet.
|
4 |
Fluxes and Mixing Processes in the Marine Atmospheric Boundary LayerNilsson, Erik Olof January 2013 (has links)
Atmospheric models are strongly dependent on the turbulent exchange of momentum, sensible heat and moisture (latent heat) at the surface. Oceans cover about 70% of the Earth’s surface and understanding the processes that control air-sea exchange is of great importance in order to predict weather and climate. In the atmosphere, for instance, hurricane development, cyclone intensity and track depend on these processes. Ocean waves constitute an obvious example of air-sea interaction and can cause the air-flow over sea to depend on surface conditions in uniquely different ways compared to boundary layers over land. When waves are generated by wind they are called wind sea or growing sea, and when they leave their generation area or propagate faster than the generating wind they are called swell. The air-sea exchange is mediated by turbulent eddies occurring on many different scales. Field measurements and high-resolution turbulence resolving numerical simulations have here been used to study these processes. The standard method to measure turbulent fluxes is the eddy covariance method. A spatial separation is often used between instruments when measuring scalar flux; this causes an error which was investigated for the first time over sea. The error is typically smaller over ocean than over land, possibly indicating changes in turbulence structure over sea. Established and extended analysis methods to determine the dominant scales of momentum transfer was used to interpret how reduced drag and sometimes net upward momentum flux can persist in the boundary layer indirectly affected by swell. A changed turbulence structure with increased turbulence length scales and more effective mixing was found for swell. A study, using a coupled wave-atmosphere regional climate model, gave a first indication on what impact wave mixing have on atmosphere and wave parameters. Near surface wind speed and wind gradients was affected especially for shallow boundary layers, which typically increased in height from the introduced wave-mixing. A large impact may be expected in regions of the world with predominant swell. The impact of swell waves on air-sea exchange and mixing should be taken into account to develop more reliable coupled Earth system models.
|
Page generated in 0.0777 seconds