• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Atmospheric Gravity Wave Transfer Function above Scott Base

Geldenhuis, Andre January 2008 (has links)
Gravity waves have a significant dynamic effect in the mesosphere. In particular, they drive the mesospheric circulation and are the reason that the summer polar mesosphere is cooler than the winter polar mesosphere. This thesis examines whether the effects of gravity waves are largely determined by filtering effects which allow only gravity waves with certain properties to propagate into the atmosphere. The filtering of gravity waves above Scott Base, Antarctica is examined using a radiosonde derived gravity wave source function, an MF-radar derived mesospheric gravity wave climatology, and a model derived filtering function. Least squares fitting of the source function and filtering function to the observed mesospheric gravity wave climatology allows us to determine which gravity wave phase velocities and propagation direction are likely to be present in the mesosphere and the relative importance of filtering and sources in this region. It is concluded the blocking of eastward gravity waves is important in winter and westward waves in summer.
2

The Atmospheric Gravity Wave Transfer Function above Scott Base

Geldenhuis, Andre January 2008 (has links)
Gravity waves have a significant dynamic effect in the mesosphere. In particular, they drive the mesospheric circulation and are the reason that the summer polar mesosphere is cooler than the winter polar mesosphere. This thesis examines whether the effects of gravity waves are largely determined by filtering effects which allow only gravity waves with certain properties to propagate into the atmosphere. The filtering of gravity waves above Scott Base, Antarctica is examined using a radiosonde derived gravity wave source function, an MF-radar derived mesospheric gravity wave climatology, and a model derived filtering function. Least squares fitting of the source function and filtering function to the observed mesospheric gravity wave climatology allows us to determine which gravity wave phase velocities and propagation direction are likely to be present in the mesosphere and the relative importance of filtering and sources in this region. It is concluded the blocking of eastward gravity waves is important in winter and westward waves in summer.
3

HF Radar Observations of Inter-Annual variations in Mid-Latitude Mesospheric Winds

Malhotra, Garima 15 June 2016 (has links)
The equatorial Quasi Biennial Oscillation (QBO) is known to be an important source of inter-annual variability at mid and high latitudes in both hemispheres. Coupling between QBO and the polar vortex has been extensively studied over the past few decades, however, less is known about QBO influences in the mid-latitude mesosphere. One reason for this is the relative lack of instrumentation available to study mesospheric dynamics at mid-latitudes. In this study, we have used the mid-latitude SuperDARN HF radar at Saskatoon (52.16 N, -106.53 E) to study inter-annual variation in mesospheric winds. The specific aim was to determine whether or not a Quasi Biennial signature could be identified in the Saskatoon mesosphere, and if so, to understand its relationship with the equatorial stratospheric QBO. To achieve this goal, a technique has been developed which extracts meteor echoes from SuperDARN near-range gates and then applies least-squares fitting across all radar beam directions to calculate hourly averages of the zonal and meridional components of the mesospheric neutral wind. Subsequent analysis of 13 years (2002-2014) of zonal wind data produced using this technique indicates that there is indeed a significant QBO signature present in Saskatoon mesospheric winds during late winter (Jan-Feb). This mesospheric QBO signature is in opposite phase with the equatorial stratospheric QBO, such that when QBO (at 50 hPa) is in its easterly (westerly) phase, the late winter winds in Saskatoon mesosphere become more (less) westerly. To further examine the source of the signature, we also analyzed winds in the Saskatoon stratosphere between 5 hPa and 70 hPa using the ECMWF ERA-Interim reanalysis data set, and found that the late winter stratospheric winds become less (more) westerly when QBO is easterly (westerly). This QBO signature in the mid-latitude stratospheric winds is essentially the same as that observed for the polar vortex in previous studies but it is opposite in phase to the mid-latitude mesospheric QBO. We therefore conclude that filtering of gravity waves through QBO-modulated stratospheric winds plays a major role in generating the mesospheric QBO signature we have identified in the Saskatoon HF radar data. When the Saskatoon stratospheric winds are anomalously westward during easterly QBO, the gravity waves having westward momentum might be filtered out, depositing a net eastward momentum in the mesosphere as they propagate upwards. This would result in increased westerly mesospheric winds at Saskatoon. The opposite would happen when the equatorial QBO is westerly. / Master of Science

Page generated in 0.078 seconds