• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Internal Wave Generation and Near-Resonant Interactions: Theory and Applications

Rees, Timothy January 2011 (has links)
Near-resonant triad interactions and wave generation theory are investigated for continuously stratified fluids. Interaction equations are derived for spatially-varying wave trains under the inviscid Boussinesq approximation. Rotational effects are included, and properties of the underlying eigenvalue problem are explored. To facilitate a numerical study of the near-resonant interactions, numerical methods are developed and an analysis of wave generation on a periodic domain is performed. Numerical experiments using laboratory and ocean-scale parameters are conducted, and the simulations confirm the validity of the wave forcing theory. Interaction experiments demonstrate a strong tendency for waves to exhibit nonlinear behaviour. While resonant interactions are observed in the laboratory scale simulations, nonlinear steepening effects and the formation of solitary-like waves dominate the ocean-scale experiments. The results suggest that the weakly-nonlinear interaction theory is only appropriate in a limited parameter regime. The problem of analyzing forced wave equations on an infinite domain is also considered. Motivated by the results obtained on a periodic domain, asymptotic analysis is applied to three important wave equations. The method of steepest descents is used to determine the large-time behaviour for the linearized Korteweg-de Vries, Benjamin-Bona-Mahony, and internal gravity wave equations. The asymptotic results are compared with numerical experiments and found to agree to high precision.
2

Internal Wave Generation and Near-Resonant Interactions: Theory and Applications

Rees, Timothy January 2011 (has links)
Near-resonant triad interactions and wave generation theory are investigated for continuously stratified fluids. Interaction equations are derived for spatially-varying wave trains under the inviscid Boussinesq approximation. Rotational effects are included, and properties of the underlying eigenvalue problem are explored. To facilitate a numerical study of the near-resonant interactions, numerical methods are developed and an analysis of wave generation on a periodic domain is performed. Numerical experiments using laboratory and ocean-scale parameters are conducted, and the simulations confirm the validity of the wave forcing theory. Interaction experiments demonstrate a strong tendency for waves to exhibit nonlinear behaviour. While resonant interactions are observed in the laboratory scale simulations, nonlinear steepening effects and the formation of solitary-like waves dominate the ocean-scale experiments. The results suggest that the weakly-nonlinear interaction theory is only appropriate in a limited parameter regime. The problem of analyzing forced wave equations on an infinite domain is also considered. Motivated by the results obtained on a periodic domain, asymptotic analysis is applied to three important wave equations. The method of steepest descents is used to determine the large-time behaviour for the linearized Korteweg-de Vries, Benjamin-Bona-Mahony, and internal gravity wave equations. The asymptotic results are compared with numerical experiments and found to agree to high precision.

Page generated in 0.0691 seconds