• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study on the Electro-magnetic of Generators System Application of Floating Structure

Cheng, Chia-chang 15 February 2011 (has links)
For an offshore platform structure applied to wave-energy conversion system, in order to catch the maximum waves to generate more powers, similar to wind-energy power generators, a range of angles for the devices normal to the propagating direction of incident waves is required, particularly when the power converting system has directional preference. In this study, an electro-magnetic wave energy conversion device was developed and tested in a single-mooring offshore platform system. In order to find the best design parameters for the electro-magnetic generators system in various wave periods a water-tank experiment was designed and performed. During the experimental study, both wave parameters and dimensional related parameter of the generator were under investigation. It was found in this study that the newly developed wave conversion system can work well under certain periods and height of waves. The relationships between the parameter were presented into figures.
2

Experimental Study of a new sloshing liquid U-column wave power converter in water-tank

Wu, Tzu-Ching 10 September 2009 (has links)
For an offshore platform structure applied to wave-energy conversion system, in order to catch the maximum waves to generate more powers, similar to wind-energy power generators, a range of angles for the devices normal to the propagating direction of incident waves is required, particularly when the power converting system has directional preference. That is one essential reason why a single mooring offshore platform system is so important in the development of an offshore wave-energy conversion system. The single mooring-system would allow the offshore wave-energy conversion system to turn freely in accordance to the action of strong directions of propagating waves and in this way, most energy induced from the incident waves can be caught and converted into reusable powers. The aims of this study are firstly, based on previous studies to further modify a single moored offshore platform system that may subject to less wave forces in the sea and, secondly, to verify the efficiency of single-moored system by carrying out an experimental testing on a simple single-moored floating platform system in the water tank.

Page generated in 0.1058 seconds