• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

R-CNN and Wavelet Feature Extraction for Hand Gesture Recognition With Emg Signals

Shanmuganathan, Vimal, Yesudhas, Harold Robinson, Khan, Mohammad S., Khari, Manju, Gandomi, Amir H. 01 November 2020 (has links)
This paper demonstrates the implementation of R-CNN in terms of electromyography-related signals to recognize hand gestures. The signal acquisition is implemented using electrodes situated on the forearm, and the biomedical signals are generated to perform the signals preprocessing using wavelet packet transform to perform the feature extraction. The R-CNN methodology is used to map the specific features that are acquired from the wavelet power spectrum to validate and train how the architecture is framed. Additionally, the real-time test is completed to reach the accuracy of 96.48% compared to the related methods. This kind of result proves that the proposed work has the highest amount of accuracy in recognizing the gestures.

Page generated in 0.0931 seconds