• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetic Monte-Carlo studies of island shape evolution on weakly-interacting substrates

Thunström, Filip January 2018 (has links)
Metal thin films deposited on weakly-interacting substrates constitute an essential element of numerous microelectronic, catalytic, and optical devices. However, the natural tendency of metal atoms to agglomerate, upon condensation on a weakly-interacting surface, in dispersed three-dimensional (3D) islands affects negatively the performance of the above-mentioned devices. The aim of this thesis is to investigate one of the mechanisms governing silver (Ag) 3D island growth on weakly-interacting substrates, i.e. the nucleation of a new layer on the island top. Kinetic Monte Carlo (KMC) simulations are employed to calculate the top island-layer critical radius Rc required for nucleating a new layer in the out-of-plane direction. Single-island simulations are performed for growth temperatures T in the range 250 to 500 K and ratios of the pairwise adatom/substrate atom bond strength EB,sub to the corresponding adatom/adatom value EB,film in the range 0.5 to 0.75. We find that for T values below 250 K the islands exhibit a 2D morphology for all EB,sub/EB,film ratios. In contrast, for T values above 300 K there exists a range of relatively small EB,sub/EB,film values, where 2D morphology dominates. To calculate Rc for each island layer as the island shape evolves, a subroutine is developed and implemented in an existing KMC algorithm. Rc values are computed for 3D island growth at EB,sub/EB,film = 0.5 in the T range 300−500 K and the results show that Rc decreases monotonously from 17.3 to 6.0 Å and saturates approximately at 375 K. This trend is opposite to the typical behavior of islands grown under homoepitaxial conditions, for which the enhancement of downward inter-layer diffusion caused by an increase of T leads to lower atomic densities on the top, i.e. to a lower nucleation probability, and thus to an increase of Rc. This work contributes to the understanding of the physical processes that control thin-film morphological evolution; which is paramount for controlling and manipulating film growth for specific applications.

Page generated in 0.139 seconds