• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quality Management during Sintering of Cemented Carbides and Cermets

Sipola, Josefin January 2015 (has links)
The magnetic properties, coercivity, Hc, and weight-specific magnetic saturation, CoM, are two important quality characteristics in cemented carbides and ceramic metals, cermets. These properties give information about grain size and binder phase content, and are influenced by the different stages in the sintering process. This master thesis aim to investigate how the magnetic properties in cemented carbides are influenced by the top temperature during sintering and how the sintering processes used for cermets can be optimized in order to gain better magnetic properties in the final products. During the first part of the project, the temperature range investigated was 1380°C–1520°C. The results indicate that Hc in cemented carbides has a strong temperature dependence, where increasing top temperature results in lower Hc. In order to have approval limits for the furnace control pieces that follow the process directives, the limits used today need to become narrower. Furthermore, the results show that CoM also has a temperature dependence, although not as strongly as Hc. During the second part of the project, already existing data of the magnetic properties in four different cermet grades were evaluated. The results indicate that the two sintering processes used in the DDK furnace are generating too high results in Hc and CoM. Optimization tests were conducted and changes implemented in order to gain better results, where the DJ1430 process now has an increased time during the solid state sintering and the DF1480 process now has an increased time during the liquid phase sintering.

Page generated in 0.1339 seconds