1 |
Structures of some weighted composition operators on the space of square integrable functions with respect to a positive measurePan, Hong-Bin 12 June 2002 (has links)
Let T be the unit circle,(mu) be a Borel probability measure on T and (phi) be a bounded Lebesgue measurable function on T. in this paper we consider the weighted composition operator W(phi) on L^2(T,mu) defined by
W(phi)f:=(phi)*(f(circle)(tau)), f in L^2(T),
where (tau) is the map (tau)(z)=z^2, z in T.
We will study the von Neumann-Wold decomposition of W(phi) when W(phi) is an isometry and (mu)<< m,where m is the normalized Lebesgue measure on T.
|
Page generated in 0.1452 seconds