• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning to Grasp Unknown Objects using Weighted Random Forest Algorithm from Selective Image and Point Cloud Feature

Iqbal, Md Shahriar 01 January 2014 (has links)
This method demonstrates an approach to determine the best grasping location on an unknown object using Weighted Random Forest Algorithm. It used RGB-D value of an object as input to find a suitable rectangular grasping region as the output. To accomplish this task, it uses a subspace of most important features from a very high dimensional extensive feature space that contains both image and point cloud features. Usage of most important features in the grasping algorithm has enabled the system to be computationally very fast while preserving maximum information gain. In this approach, the Random Forest operates using optimum parameters e.g. Number of Trees, Number of Features at each node, Information Gain Criteria etc. ensures optimization in learning, with highest possible accuracy in minimum time in an advanced practical setting. The Weighted Random Forest chosen over Support Vector Machine (SVM), Decision Tree and Adaboost for implementation of the grasping system outperforms the stated machine learning algorithms both in training and testing accuracy and other performance estimates. The Grasping System utilizing learning from a score function detects the rectangular grasping region after selecting the top rectangle that has the largest score. The system is implemented and tested in a Baxter Research Robot with Parallel Plate Gripper in action.

Page generated in 0.0542 seconds