Spelling suggestions: "subject:"west adhesion""
1 |
Wet adhesion properties of oilseed proteins stimulated by chemical and physical interactions and bondingLiu, Haijing January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / X. Susan Sun / The ecological and public health liabilities related with consuming petroleum resources have inspired the development of sustainable and environmental friendly materials. Plant protein, as a byproduct of oil extraction, has been identified as an economical biomaterial source and has previously demonstrated excellent potential for commercial use. Due to the intrinsic structure, protein-based materials are vulnerable to water and present relatively low wet mechanical properties. The purpose of this study focuses on increasing protein surface hydrophobicity through chemical modifications in order to improve wet mechanical strength. However, most of the water sensitive groups (WSG), such as amine, carboxyl, and hydroxyl groups, are also attributed to adhesion. Therefore, the goal of this research is to reduce water sensitive groups to an optimum level that the modified soy protein presents good wet adhesion and wet mechanical strength.
In this research, we proposed two major approaches to reduce WSG: 1). By grafting hydrophobic chemicals onto the WSGs on protein surface; 2). By interacting hydrophobic chemicals with the WSGs. For grafting, undecylenic acid (UA), a castor oil derivative with 11-carbon chain with a carboxyl group at one end and naturally hydrophobic, was used. Carboxyl groups from UA reacted with amine groups from protein and converted amines into ester with hydrophobic chains grafting on protein surface. The successful grafting of UA onto soy protein isolate (SPI) was proved by both Infrared spectroscopy (IR) and ninhydrin test. Wood adhesive made from UA modified soy protein had reached the highest wet strength of 3.30 ± 0.24 MPa with fiber pulled out, which was 65% improvement than control soy protein. Grafting fatty acid chain was verified to improve soy protein water resistance.
For interaction approach, soy oil with three fatty acid chains was used to modify soy protein. Soy oil was first modified into waterborne polyurethanes (WPU) to improve its compatibility and reactivity with aqueous protein. The main forces between WPU and protein were hydrogen bonding, hydrophobic interactions, and physical entanglement. Our results showed that WPU not only increased protein surface hydrophobicity with its fatty acid chains but also enhanced the three-dimensional network structure in WPU-SPI adhesives. WPU modification had increased wet adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa of SPI. Based on IR and thermal behavior changes observed by DSC, it was inferred that a new crosslinking network formed between WPU and SPI.
To exam if the UA and WPU technologies developed using soy protein are suitable for other plant proteins, we selected camelina protein because camelina oil has superior functional properties for jet fuels and polymers. Like soy protein, camelina protein is also highly water sensitive. However, simply applied UA and WPU to camelina protein following the same methods used for soy proteins, we did not obtain the same good adhesion results compared to what we achieved with soy protein. After protein structure analysis, we realized that camelina protein is more compact in structure compared to soy protein that made it weak in both dry and wet adhesion strength. Therefore, for camelina protein, we unfolded its compact structure with Polymericamine epichlorohydrine (PAE) first to improve flexible chains with more adhesion groups for future reaction with UA or WPU. PAE with charged groups interacted camelina protein through electrostatic interaction and promoted protein unfolding to increase reactivity within protein subunits and between protein and wood cells. Therefore, the wet adhesion strength of camelina protein was improved from zero to 1.30 ± 0.23 MPa, which met the industrial standard for plywood adhesives in terms of adhesion strength. Then the wet adhesion strength of camelina protein was further improved after applying UA and WPU into the PAE modified camelina protein. In addition, we also found PAE unfolding significantly improved the dry adhesion strength of camelina protein from 2.39 ± 0.52 to 5.39 ± 0.50 MPa with 100% wood failure on two-layer wood test.
Camelina meal which is even more economical than camelina protein was studied as wood adhesive. Through a combination of PAE and laccase modification method, the wet adhesion strength of camelina meal was improved as high as 1.04 ± 0.19MPa, which also met industrial standards for plywood adhesives.
The results of this study had proven successful modification of oilseed protein to increase water resistance and wet mechanical strength. We have gained in-depth understanding of the relationship between protein structure and wet adhesion strength. The successful modification of plant proteins meeting the industrial needs for bio-adhesives will promote the development of eco-friendly and sustainable materials.
|
2 |
Wet Adhesion of Polyvinylamine-Phenylboronic Acid to Cellulose HydrogelChen, Wei 11 1900 (has links)
<p> The ability of a never-dried paper web on a paper machine to resist breakage is commonly referred to as paper wet-web strength. Low wet-web strength can lead to frequent breaks which interrupt production and lower paper machine efficiency. Currently, no commercial products provide the function of enhancing wet-web strength. Boronic acid derivatized polyvinylamine (PVAm-PBA) showed high instantaneous wet adhesion to regenerated cellulose membranes. The objective of the research summarized in this thesis was to determine the factors and mechanisms dictating PVAm-PBA adhesion to wet cellulose. In addition, narrowly distributed PVAm microgel was prepared and the wet adhesion of boronate-microgels to cellulose is reported.</p> <p> The phase behavior and surface tension of PVAm-PBA were measured as functions of pH and the degree of PBA substitution. The pH ranges over which phase separation occurred increased with PBA substitution. 150 kDa PVAm-PBA with 4% derivatization phased separated at pH 8.5 to 9.5.The copolymer based on 51 % substitution was insoluble over most of the pH range. The hydrophobicity of copolymers was reflected in the significant lowering of surface tension particularly at high pH. Additionally, fructose, which binds to borate, influenced the titration curves but did not influence surface tension.</p> <p> Pairs of wet, regenerated cellulose films were laminated with PVAm-PBA and the forces required to delaminate the never-dried laminates, were measured as functions of adhesive structure and application conditions. The greatest wet adhesion was obtained with 150 kDa PVAm with 16% of the amines bearing phenylboronic moieties. The pH at which the PVAm-PBA was adsorbed onto the cellulose was the dominant process parameter. The specific role of the phenyl boronic groups was illustrated in two ways: a) replacing the B(OH)2 with OH (i.e. phenol) gave much lower adhesion; and, b) wet adhesion was greatly reduced by the presence of sorbitol which effectively competes with cellulose for boronate binding sites.</p> <p> The interaction of boronate and cellulose was studied. Owing to poor solubility of cellulose, two model polymers: dextran and hydroxyethyl cellulose (HEC) and two saccharides: glucose and cellobiose were measured by boron NMR measurement, tensile extension, fluorescence spectra, viscometer and peeling test methods. In conclusion, carbon-1, 2 diols at one end of cellulose chain can react with boronic acid. By contrast, carbon-2, 3 diols, which are abundant on cellulose chains, cannot react with boronic acid and the other diols, such as carbon-3, 4 diols and carbon-4, 6 diols cannot react with boronic acid. The high adhesion of boronate containing polymers to cellulose membranes was attributed to boronate ester formation with the cellulose end groups on the membrane surfaces. </p> <p> Finally, a simple and effective methodology was demonstrated for the preparation of polyvinylamine microgel with a narrow distribution. Boronate derivatives of PVAm microgels displayed very high wet adhesion to cellulose over a broad pH range.</p> / Thesis / Doctor of Philosophy (PhD)
|
3 |
Mechanisms for Cellulose-reactive Polyvinylamine-graft-TEMPO AdhesiveLiu, Jieyi 10 1900 (has links)
<p>Weak wet strength of paper is one of the major challenges limiting the increase use of paper products. It is difficult to form strong adhesive joints between hydrophilic wet cellulose surfaces. Previous research disclosed an approach using polyvinylamine (PVAm) with grafted TEMPO for oxidation of cellulose to improve wet cellulose adhesion. The object of this research is to further develop new and more eco-friendly approaches to induce adhesion between wet cellulose surfaces. PVAm-graft-TEMPOs (PVAm-TEMPO) with various TEMPO grafting extents were prepared and characterized by electron paramagnetic resonance (EPR) and conductometric titration. The stability studies of fully hydrolysed PVAm in sodium hypochlorite (NaClO) environment were conducted. PVAm can be oxidized and degraded by NaClO in alkaline solution. Furthermore, PVAm-TEMPO was applied into the TEMPO/laccase/O2 oxidation of cellulose. Increased wet adhesion between cellulose surfaces were achieved with this enzyme catalyzed approach and the mechanism of this approach was investigated. PVAm-TEMPO and laccase works together as mediators catalyzing the oxidation of primary alcohol groups on cellulose into aldehyde groups that react to form covalent bonds with primary amines on PVAm. However, cationic PVAm-TEMPO and anionic laccase can form complexes during the oxidation process. Grafted TEMPO in enzyme catalyzed approach offers three significant advantages over small molecule TEMPO (free TEMPO). First, as PVAm has high molecular weight, the oxidation of porous fibers is restricted to the exterior surfaces only, which avoids the excessive oxidation of interior surfaces and prevents from weakening the mechanical property of fibers. Second, TEMPO is concentrated on cellulose surfaces by tethered it to PVAm, compared with water-soluble free TEMPO. Thus the total dose of TEMPO required to oxidize fibers by PVAm</p> / Master of Applied Science (MASc)
|
Page generated in 0.2257 seconds