• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Laser Welding and Stretch Forming on the Corrosion Performance of Hot-Dip Galvanized Steel

Su, Ken Yu Jen 17 September 2008 (has links)
The use of laser welding in the automotive industry in the past few decades has facilitated joining of hot-dip galvanized (HDG) steel sheets at high production rates and low cost. The recent development of tailor welded blanks (TWB) using laser welding allowed combinations of sheet grades and thicknesses to “tailor” the vehicle part for optimized design, structural integrity and crash performance but more importantly, reductions in weight. Welded blanks are further subjected to stamping or stretch forming prior to final assembly. Unfortunately, both welding and stretch forming cause the galvanized coating to deteriorate, and thereby, undermine the long term corrosion protection. Despite existing publications on zinc coated steel and advances in processing techniques, there is a lack of understanding on the influence of laser welding and stretch forming on the corrosion performance of HDG steel. Hence, the purpose of this study was to determine how welding speed and biaxial strain affect interstitial-free (IF) and high strength low allow (HSLA) steel coupons when they are subjected to continuous immersion and accelerated corrosion tests. The corrosion rates of the coupons were evaluated using electrochemical techniques and gravimetry. Changes in the galvanized coating were characterized using scanning electron metallography. It was observed that, the original zinc layer transformed into the delta and gamma Fe-Zn intermetallic phases locally in the heat affected zone (HAZ) after laser welding. The resulting microstructure was similar to that of a commercially galvannealed coating and exhibited superior corrosion resistance than that of pure zinc. Linear polarization resistance (LPR) measurements revealed that the zinc coating was able to protect a chemically exposed region of steel in 0.1 M NaCl solution. While the Nd:YAG laser welded coupons with narrow HAZs performed equally well as the non-welded ones, diode laser welded coupons, with a wide locally annealed coating in the HAZ, exhibited a decrease in the peak corrosion rate of zinc. Moreover, minimal amounts of rust were observed on the surface of the HAZ after testing. With biaxial strain, welded and deformed coupons generally demonstrated higher peak corrosion rates than that of undeformed welded ones. When subjected to cyclic corrosion testing according to SAE J2334, rust formed in the exposed region after one 24 hour test cycle due to wet-dry conditions. However, zinc corrosion products on the surface provided substantial corrosion resistance to the remaining zinc coating and to the steel substrate. Gravimetric measurements of welded coupons showed a linear increase in weight gain with increased exposed widths of the steel after 30 cycles but biaxial strain further increased the weight gain on deformed coupons. After 60 cycles, the trend became exponential for both welded and deformed coupons. There was a negligible difference between the corrosion performance of IF and HSLA steel. Using X-Ray diffraction and Raman spectroscopy, species of both iron and zinc corrosion products were identified. Without the application of paint coatings, zinc oxide (ZnO), zinc hydroxy chloride (ZnCl2[Zn(OH)2]4), and hydrozincite ([ZnCO3]2[Zn(OH)2]3) were responsible for passivating the surface and reducing the overall corrosion rate of the galvanized coating.
2

Effect of Laser Welding and Stretch Forming on the Corrosion Performance of Hot-Dip Galvanized Steel

Su, Ken Yu Jen 17 September 2008 (has links)
The use of laser welding in the automotive industry in the past few decades has facilitated joining of hot-dip galvanized (HDG) steel sheets at high production rates and low cost. The recent development of tailor welded blanks (TWB) using laser welding allowed combinations of sheet grades and thicknesses to “tailor” the vehicle part for optimized design, structural integrity and crash performance but more importantly, reductions in weight. Welded blanks are further subjected to stamping or stretch forming prior to final assembly. Unfortunately, both welding and stretch forming cause the galvanized coating to deteriorate, and thereby, undermine the long term corrosion protection. Despite existing publications on zinc coated steel and advances in processing techniques, there is a lack of understanding on the influence of laser welding and stretch forming on the corrosion performance of HDG steel. Hence, the purpose of this study was to determine how welding speed and biaxial strain affect interstitial-free (IF) and high strength low allow (HSLA) steel coupons when they are subjected to continuous immersion and accelerated corrosion tests. The corrosion rates of the coupons were evaluated using electrochemical techniques and gravimetry. Changes in the galvanized coating were characterized using scanning electron metallography. It was observed that, the original zinc layer transformed into the delta and gamma Fe-Zn intermetallic phases locally in the heat affected zone (HAZ) after laser welding. The resulting microstructure was similar to that of a commercially galvannealed coating and exhibited superior corrosion resistance than that of pure zinc. Linear polarization resistance (LPR) measurements revealed that the zinc coating was able to protect a chemically exposed region of steel in 0.1 M NaCl solution. While the Nd:YAG laser welded coupons with narrow HAZs performed equally well as the non-welded ones, diode laser welded coupons, with a wide locally annealed coating in the HAZ, exhibited a decrease in the peak corrosion rate of zinc. Moreover, minimal amounts of rust were observed on the surface of the HAZ after testing. With biaxial strain, welded and deformed coupons generally demonstrated higher peak corrosion rates than that of undeformed welded ones. When subjected to cyclic corrosion testing according to SAE J2334, rust formed in the exposed region after one 24 hour test cycle due to wet-dry conditions. However, zinc corrosion products on the surface provided substantial corrosion resistance to the remaining zinc coating and to the steel substrate. Gravimetric measurements of welded coupons showed a linear increase in weight gain with increased exposed widths of the steel after 30 cycles but biaxial strain further increased the weight gain on deformed coupons. After 60 cycles, the trend became exponential for both welded and deformed coupons. There was a negligible difference between the corrosion performance of IF and HSLA steel. Using X-Ray diffraction and Raman spectroscopy, species of both iron and zinc corrosion products were identified. Without the application of paint coatings, zinc oxide (ZnO), zinc hydroxy chloride (ZnCl2[Zn(OH)2]4), and hydrozincite ([ZnCO3]2[Zn(OH)2]3) were responsible for passivating the surface and reducing the overall corrosion rate of the galvanized coating.
3

PERFORMANCE OF GEOSYNTHETIC CLAY LINERS IN COVER, SUBSURFACE BARRIER, AND BASAL LINER APPLICATIONS

Hosney, Mohamed 28 February 2014 (has links)
The use of geosynthetic clay liners (GCLs) as (i) covers for arsenic-rich gold mine tailings and landfills, (ii) subsurface barrier for migration of hydrocarbons in the Arctic, and (iii) basal liner for sewage treatment lagoons were examined. After 4 years in field and laboratory experiments, it was found that best cover configuration above gold mine tailings might include a layer of GCL product with polymer-enhanced bentonite and a geofilm-coated carrier geotextile serving above the tailings under ≥ 0.7 m overburden. However, acceptable performance could be achieved with using a standard GCL with untreated bentonite provided that there is a minimum of 0.7 m of cover soil above the GCL. When GCL samples were exhumed from experimental landfill test cover with complete replacement of sodium in the bentonite with divalent cations in the adjacent soil, it was observed that the (i) hydraulic head across the GCLs, (ii) size of the needle-punched bundles, and (iii) structure of the bentonite can all significantly affect the value of the inferred in-situ hydraulic conductivity measured at the laboratory. The higher the hydraulic head and the larger the size of the needle-punched bundles, the higher the likelihood of internal erosion/structural change of bentonite at bundles that will cause a preferential flow for liquids to occur. A key practical implication was that GCLs can perform effectively as a single hydraulic barrier in covers provided that the water head above the GCL kept low. The hydraulic performance of a GCL in the Arctic was most affected by the location within the soil profile relative to the typical groundwater level with the highest increase in the hydraulic conductivity (by 1-4 orders of magnitude) for GCL below the water table. However, because the head required for jet fuel to pass through the GCL was higher than that present under field conditions, there was no evidence of jet fuel leakage through the barrier system. The leakage through GCLs below concrete lined sewage treatment lagoons was within acceptable limits, in large part, due to the low interface transmissivity between GCLs and the overlying poured concrete. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2014-02-28 08:53:29.171

Page generated in 0.0398 seconds